Környezeti áramlások

Tél Tamás

ELTE, Elméleti Fizikai Tanszék, Budapest

KÉZIRAT

Megjegyzések, javaslatok, ábrákkal kapcsolatos észrevételek, stb. a tel@general.elte.hu címre küldendők.

2003. július
Contents

Bevezetés ix

I Alapismeretek 1

1 Forgatott homogén közegek áramerősítése 3
 1.1 A Rossby-szám 4
 1.2 A Coriolis-hatás 6
 1.3 A Rossby-szám kicsinységének jelentése 8
 1.4 A hidrodinamikai mozgásegyenlet 9
 1.5 A dimenziótlan alak 11
 1.6 Dínamikai nyomás 13
 1.7 Gyorsan forgatott folyadék 14
 1.7.1 Oszlopos áramerősítás, a Taylor–Proudman-tétel 14
 1.7.2 A geostrofikus egyensúly 16
 1.8 A kvázigeostrofikus közelítés 20
 1.9 Tehetetlenségi körmozgás 21
 1.10 Tehetetlenségi hullámok 22
 1.10.1 Sik hullám megoldás 22
 1.10.2 Fázis-, és csoportsebesség 25

2 A sekélység hatása 29
 2.1 A forgatott sekély folyadék egyenletei 31
 2.2 A dimenziótlan egyenlet 34
 2.3 A potenciális örvényesség megmaradása 35
 2.4 Gyorsan forgatott sekély folyadék: a geostrofikus egyensúly 37
 2.5 Kvázigeostrofikus mozgás: a Rossby-hullám 39
 2.5.1 Szemléletes kép 39
 2.5.2 Lineáris elmélet 41
 2.6 Szabad felszínű Rossby-hullámok 43
 2.7 A kvázigeostrofikus egyenlet 46
 2.8 Tehetetlenségi gravitációs (Poincaré-) hullámok 47
 2.9 Kelvin-hullámok 49
 2.10 Nemlineáris felszínű hullámok, szolitonok 52
3 A görbület hatása

3.1 Földrajzi koordináták, a lokális rendszer ... 59
3.2 Az \(f_p \)-sik közelítés .. 61
3.3 A \(\beta \)-sik közelítés .. 62
3.4 A Sverdrup-összefüggés ... 64
3.5 Planetáris hullámok .. 65
3.6 Az általános légkörzés zonális áramlásai ... 67
3.7 Rossby-hullámok zonális áramlásban ... 68
3.8 A domborzat hatása zonális áramlásokra
 3.8.1 Geosztrófikus közelítés .. 69
 3.8.2 Nemgeosztrófikus eset .. 70
 3.8.3 Alkalmazások ... 72
3.9 Domborzati egyenletlenségek által gerjesztett
 Rossby-hullámok .. 73
 3.9.1 Szemléletes kép .. 73
 3.9.2 Lineáris elmélet .. 74
3.10 Partra merőleges áramlások, nyugati
 peremáramlatok ... 75
3.11 A kvázigeosztrófikus egyenlet a \(\beta \)-sikon ... 77

4 A viszkozitás hatása ... 79
4.1 Az Ekman-szám ... 81
4.2 Az Ekman-féle határéteg .. 82
 4.2.1 Szemléletes kép .. 82
 4.2.2 A gyorsan forgatott határeset 83
 4.2.3 Peremfeltételek ... 85
4.3 Az alsó határéteg ... 86
 4.3.1 A sebességelemezőlás .. 86
 4.3.2 Az Ekman-pumpálás .. 87
 4.3.3 A felpörgetési idő .. 88
4.4 A felső határéteg ... 89
 4.4.1 A sebességelemezőlás .. 89
 4.4.2 Az Ekman-transzport, fel- és leáramlások 91
 4.4.3 Ekman-pumpálás, nyírás okozta örvényességváltozás 93
4.5 A sekélyfolyadék egyenletek szélyfúrással 95
4.6 A szélhajtotta óceán .. 96
 4.6.1 Általános megfontolások 96
 4.6.2 Egyszerű óceánmodell .. 97

5 Rétegzett közegek áramlása .. 101
5.1 Folyadékok rétegzettsége .. 103
5.2 A Brunt–Väisälä-frekvencia ... 105
5.3 A hidrodinamikai egyenletek kis sűrűségadózás esetén, a Boussinesq-közelítés .. 107
5.4 A hidrodinamikai egyenletek függőleges
 rétegzettség esetén .. 108
5.5 A dimenziótlan alak, a belső Froude-szám 109
5.6 Analógia a forgatott folyadékkal .. 110
5.7 Belső hullámok .. 111
 5.7.1 Síkhullám megoldások .. 111
 5.7.2 Fázis és csoportsebesség ... 112
 5.7.3 A törési törvény, elhajlás, inverzió 114
5.8 Hegy mögötti hullámok (lee waves) 118
 5.8.1 Szemléletes magyarázat .. 118
 5.8.2 Lineáris elmélet .. 120
5.9 Belső hullámok sekély folyadékban, normálmódusok 121
5.10 Kétrétegű közegek .. 123
 5.10.1 Kétrétegű sekélyfolyadék-dinamika 123
 5.10.2 Belső hullámok két közege határán 124
 5.10.3 Megjegyzések .. 126
5.11 A redukált sekélyfolyadék-modell 127
5.12 Superkritikus áramlások .. 128
5.13 A hidraulikus ugrás és a törő hullám (bore) jellemzése .. 130
5.14 Gravitációs áramlatok ... 133
5.15 Belső szolitónok ... 135
5.16 Kelvin–Helmholtz-(KH)-instabilitás 137
 5.16.1 Szemléletes kép .. 137
 5.16.2 Lineáris stabilitásvizsgálat 139
5.17 Termikus konvekció .. 141

6 A forgatás és rétegzés együttes hatása sekély folyadékkra 145
6.1 A forgatott kétrétegű sekély folyadék egyenletei 147
6.2 A folytonos rétegzetséggő forgatott sekély folyadék egyenletei 149
6.3 Hullámok forgatott kétrétegű sekély folyadékban 150
6.4 Hullámok állandó függőleges rétegzetséggő forgatott, sekély folyadékban .. 153
6.5 Geosztrofikus egyensúly kétrétegű sekély folyadékban 157
6.6 Frontok forgatott rendszerekben, a Margules-összefüggés 159
6.7 A geosztrofikus egyensúly beállása 162
6.8 Geosztrofikus egyensúly folytonos rétegzetséggő folyadékban 164
 6.8.1 A termikus áramlás .. 165
 6.8.2 A Golf-áramlat gyűrűinek forgása 167
6.9 Rossby-hullámok kétrétegű közegekben: szemléletes kép 168
6.10 A kvázigeosztrofikus egyenlet kétrétegű közegebén 169
6.11 Lineáris Rossby-hullámok kétrétegű közegekben 170
6.12 A baroklin instabilitás: szemléletes kép 171
6.13 A baroklin instabilitás kétrétegű közegebén 174
6.14 A baroklin instabilitás kísérleti kimutatása 177
Turbulencia

7.1 Az átlagolt hidrodinamikai egyenletek .. 183
7.2 A turbulens határréteg ... 185
7.3 A logaritmikus sebességs profil .. 187
7.4 Turbulencia rétegzett közegekben ... 188
7.5 Könnyű közegek turbulens áramlása .. 190
7.5.1 Termíkek ... 190
7.5.2 Turbulens csóvák (plume-ok) ... 192
7.6 A turbulens határréteg rétegzett közegekben 193
7.7 Homogén, izotróp turbulencia ... 196
7.7.1 Háromdimenziós turbulencia .. 198
7.7.2 Kétdimenziós turbulencia .. 200
7.7.3 Geosztrofikus turbulencia .. 204

Kiegészítő olvasmányok

8 Forogatott homogén közegek áramlása ... 209
8.1 Az örvényvektor egyenlete .. 209
8.2 A cirkuláció változása ... 210

9 A sekélység hatása .. 213
9.1 Kvázigeoosztrofikus dinamika a sekélyfolyadék
 egyenletekből ... 213
9.2 Hullámok döntött aljzatú sekély folyadékban 214
9.3 Szolitonok és a KdV-egyenlet .. 215

10 A görbület hatása .. 221
10.1 Nyugati peremáramlatok a kvázigeoosztrofikus
 egyenletből ... 221
10.2 Egyenlítői dinamika ... 222
10.2.1 Az egyenlítői β-sík és Rossby-sugár 222
10.2.2 Egyenlítői Kelvin-hullámok ... 222
10.2.3 Egyenlítői Poincaré- és Rossby-hullámok 223
10.3 Gömbi hidrodinamika .. 226
10.3.1 Gyorsulások gömbi koordinátákban 226
10.3.2 Hidrodinamika a forgó Földön ... 228

11 A viszkozitás hatása .. 229
11.1 Ekman-transzport az alsó határrétegben 229
11.2 A Stórmel-modell .. 230
11.3 A viszkozus folyadék kvázigeoosztrofikus
 egyenlete ... 232
11.4 A viszkozitás hatása a Rossby-hullámokra 233
11.5 Viharhullámok ... 234
12 Rétegzett közegek áramlása 237
12.1 Állóhullámok, tőlengések (seiche) ... 237
12.2 Kettős diffúziós konvekció ... 239
12.2.1 Általános megfontolások ... 239
12.2.2 A kettős diffúziós konvekció egyenletei 244
12.3 A potenciális sűrűség és potenciális hőmérséklet 244

13 A forgatás és rétegzés együttes hatása sejély folyadékra 251
13.1 Partmenti feláramlások ... 251
13.2 A kvázigéoastrofikus egyenlet folytonos függőleges rétegzettségű közegben 253
13.3 Rossby-hullámok folytonos rétegzettség esetén 256
13.4 A baroklin instabilitás folytonos rétegzettségű közegben 259

III Függelék 263

14 Összefoglalás 265
14.1 A természetes közegek anyagi paraméterei 265
14.2 A mozgásegyenletek .. 266
14.3 Dimenziótlan számok .. 270
14.4 Közelítések .. 271
14.5 Hullámtípusok .. 272
14.6 Jellegzetes távolságok ... 274
14.7 Irodalom .. 275
Bevezetés

Környezeti áramlás természetes közegeink, a levegő és a víz bármilyen, nagy anyagmennyiségét érintő mozgása. E jelenségekkel az emberi léptékénél jóval nagyobb, kilométeres vagy annál hosszabb távolságválasztási társul, mely gyakran akár a több 1000 km-t is elérheti, azaz összemérhetővé válhat a Föld sugarával. A környezeti áramlásokkal kapcsolatos térbeli struktúrák jól megfigyelhetők műholdfelvételeken. Példaként egy ciklon örvénylő felhőrendszert, ill. a Golf-áramlatot és gyűrűt láthatjuk az 1., 2. ábránk.

Az áramlásokhoz tartozó időskála még bőven emberi léptékű: óra, esetleg nap nagyságrendű. Ebből adódik az egész jelenségek egyik érdekesége: általánó jól megfigyelhető és érzékelhető időbeli változásokkal jár, annak ellenére, hogy az áramlás térbeli viszonyairól, a nagy méretek miatt nem lehet közvetlen tapasztalatunk. Nem kétséges, hogy a környezeti áramlások is a hidrodinamika témaköréhez tartoznak, csak más távolság- és időskálan, mint a szokásos, laboratóriumi hidrodinamika jelenségei, melyek kiterjedése méter nagyságrendű, és időben néhány másodperc, illetve perc alatt zajlanak le.

Történetileg a légkör és az óceánok dinamikájának vizsgálata két külön tudomány, mai névkönyvén a dinamikus meteorológia és a fizikai oceanográfia keretében kezdődött meg a XX. század elején. A 30-as, 50-es években már alapvető jelentőségű felismerések születtek. Ezekhez feltűnik, hogy számos fontos jelenség független az áramló közeg anyagi összetételétől. A légkör és a vizek áramlását, és ezen közös vonásait leíró tudomány a geofizikai folyadékdinamika (GFD) nevet kapta, melyre az utóbbi időben egyre gyakrabban alkalmazzák a környezeti áramlások fizikája elnevezést is. A leírt jelenségek univerzálisak, azaz más környezetben is előfordulhatnak, így pl. más bolygónk légkörében vagy a Föld magjában.

A hagyományos laboratóriumi hidrodinamikával szemben a környezeti hidrodinamika legfontosabbak új vonásai:

- forgó rendszerhez kötött, ezért a dinamikai leírásban a tehetsélességi erők, elsősorban az ellértő erő, a Coriolis-erő jelentéte alapvető,
- rétegzett rendszer, melyben az egyes, körül vízszintes rétegek különböző sűrűségűek,
- sekélyfolyadék rendszer, melynek mélysége sokkal kisebb vízszintes méreténél (hiszen a légkör legfontosabb alsó rétege, a troposzféra, és az óceánok átlagos vastagsága csak néhány km),
- gömbi rendszer, melyben a nagysebesség jelenségek szempontjából a Föld gömbülete nem hanyagolható el.

A környezeti áramlások fent említett vonásai számos olyan jelenségre vezetnek, melyek a hagyományos hidrodinamikában elképzelhetetlenek. Ilyen például az a tény, hogy az áramlások nem
1 ábra: Nagyszálajú környezeti áramlás a légkörben. Úrhajófelvétel egy Nagy-Britannia feletti ciklon felhőrendszeréről, melyben a légkörmégek az áramlattal járásával ellentétes (pozitív) irányban forognak [European Space Agency, Ahrens].

A nyomáskülönbség irányába, hanem arra közel merőlegesen zajlanak. Néhány nap periódusidejű és több országnyi kiterjedésű hullámok is kialakulhatnak, melyek a légkörben időjárással elsődleges alakultak. A felszín közelében a sebességvektor nemcsak nő, hanem el is fordul a magassággal. Az óceáni víztömegek nem a szél irányába, hanem arra merőlegesen mozdnak el. A sűrűségkülönbség következtében kívülről láthatatlan belső hullámok alakulnak ki, és a frontokban jelentős sebességugrás figyelhető meg a frontonallal párhuzamosan is! Szinte minden nagy jelenséggör capsán előbb utóbbit nemlineáris hatásokkal találkozunk (külü és belső szoktonok, torótoallám, hidraulikus ürő). Ezekkel instabilitások társulnak, melyek mind a turbulencia felé vezetnek, s nagy skálán a kétdimenziós turbulencia jellegzetességeit mutatják, melyben az örvények egyre nagyobbakká olvadnak össze.

A környezeti áramlások iránti érdeklődés nemzetközi szinten állandóan erősödik. Ez nemcsak annak tulajdonító, hogy egyre erősebb a társadalmi igény a környezeti problémák kezelésére, hanem annak is, hogy egy új tudományág, a nemlineáris dinamika jelentős szempont játszhat e jelenségek megértésében. Példaként csak a szennygezek terjedése során előforduló fonálat, önhasználó mintázatokat említjük, melyek a kaotikus rendszerek fraktál tulajdonságai által változó magyarázhatóvá. Ebben az új szemléletben a környezeti áramlások vizsgálata a hidrodinamika és a dinamikai rendszerek fizikájának együttes alkalmazását jelenti.

Ezen összetett jelenségkör leírása óhatatlanul közelítéseken alapszik. Így van ez annak elle-nére, hogy a hidrodinamikai egyenletek egyszerűen ismertek, hiszen nemlineáritásuk miatt általános
2 ábra: Nagyskálájú környezeti áramlás az óceánban. Múholdfelvétel a Golf-áramlatról. Miután elhagyja az amerikai kontinenset, az áramlat kigyöző (meanderező) alakzatot vesz fel, melyről mintegy 100 km átmérőjű, stőbb évig is jól azonosítható gyűrűk szakadnak le. Közülük az áramlástól délebben a környezetüknel hidegebbek és pozitív forgástak (ciklonálisak), az északiak pedig melegek és negatív forgásúak (anticiklonálisak) [rs.gso.uri.edu/amy/eastcoast_june84.gif].

megoldásuk reménytelen. A környezeti áramlások fizikája úgy jó példa egy komplex probléma természettudományos megközelítésére, mely megfigyelése, a számadatok ismeretén, egyszerűsített elméleti leíráson, modellalkotáson, a modell érvényességi körének meghatározásán, majd a tapasztalathoz igazodó finomításán alapul.

Hogyan olvassuk a jegyzetet?

A jegyzet többféleképpen olvasható. Azok számára, akik gyors kvalitatív áttekintést szeretnének kapni a jelenségkörre, az első hét nagy fejezet dölt betűvel szedett bevezető oldalain ismeretterjesztő szinten foglaljuk össze az tudnivalókat, a jegyzet képanyagára támaszkodva. A fő szöveg feltételez elemi hidrodinamikai ismereteket (sebkességtér, nyomás, örvényesség, a Navier-Stokes egyenlet, vízhallmás, stb), a kísérleti fizika, ill. a tanár szakos hallgatók elméleti fizika tárgyának szintjén. Minden összefüggés levezetését megadjuk, a lehető legegyszerűbb matematikai eszközökkel. Az "Alapismeretek" című első rész a környezeti áramlásokkal kapcsolatos legfontosabb, s a hagyományos hidrodinamika szempontjából legmeglepőbb jelenségek megértéséhez szükséges elméleti hátteret adja. A jegyzet egészében mindenütt bemutatunk számadatokkal alátámasztott konkrét környezeti példákat. A második rész a fő szöveg gondolatmenetét kiegészítő témákat dolgoz fel, és matematikailag valamivel bonyolultabb levezetéseket is tartalmaz. Olvasható az első részbeli
párhuzamosan, vagy az után is. A harmadik rész összefoglaló táblázatokkal segíti a tanultak rendszerezését.

Az anyag a különböző hatások egymásraépülését mutatja be (l. 3 ábra). Először a forgatás okozta új vonásokat vizsgáljuk homogén folyadékokban. Eztán rátérünk arra, hogy a sekélység, ill. a Föld görbülete hogyan befolyásolja a forgatott közeg mozgását. Az általában gyenge, de nem teljesen alhajógsatható viszkozitás mindezeket a hatásokat egységesen értelmezhető rendszerbe fogja. A rétegzettség következményeit először forgatás nélkül tekintjük át, ezért ez a rész az előzőek ismerté nélkül is olvasható. Az ezután következő anyagrész egyaránt tekinthető a rétegzett rendszerek forgatása vagy a forgatott rendszerek rétegződése következtében létrejövő jelenségek bemutatásának. E két hatás a környezeti áramlásokban összemérhető. A 7. fejezet a különböző típusú turbulens áramlások kvalitatív áttekintését adja.

<table>
<thead>
<tr>
<th>Turbulencia (7.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forgatás és rétegzettség (6.,13.)</td>
</tr>
<tr>
<td>Görbület (3.,10.)</td>
</tr>
<tr>
<td>Sekélység (2.,9.)</td>
</tr>
<tr>
<td>Forgatás (1.,8.)</td>
</tr>
</tbody>
</table>

3 ábra: Az egyes fejezetek anyagának egymásraépülése

Alapvető kérdés, hogy lehetséges-e a természetes-résny nagyskálájú környezeti áramlások kísérleti modelljezése laboratóriumban. A hidrodinamikai hasonlóság törvénye szerint ennek szükséges feltétele az, hogy az egyes hatásokat jellemző dimenziólag számok azonosak legyenek a valóságos és a laboratóriumi áramlásban. A jegyzet minden fejezete egy-egy dimenziólag szám, ill. a velük kapcsolatos jelenségek köré épül. Kijutatjuk, hogy e számok valóságos értékek forgókódak és sűrűségőttes közeg (leegyszerűbben sós víz) használatával laboratóriumban is megvalósíthatók: a környezeti áramlások húsen modellezhetők emberi méretekben.

Köszönetnyilvánítás:

A szerző köszönetét fejezi ki a Kármán Laboratóriumot kialakító kollégáinak az ottani közös kísérleti munkáért. Külön köszönet illeti Jánosi Imrét lényeges módot megjegyzéseiről és sokoldalú segítségéről. Palla László és Szabó Gábor, valamint Czifrik Xénia, Doloucheidik Márk, Kiraly

xii
I. rész

Alapismeretek
1. fejezet

Forgatott homogén közegek áramlása

A légköri és óceáni áramlatokban megfigyelhető jellegzetes, nagymértű örvényű mozgások (1., 2. ábra) létezése elsősorban a közege forgatottságának következménye. A forgatott rendszerben zajló áramlások új vonásai azzal kapcsolatosak, hogy a valódi erőkön kívül ilyenkor lényeges szeretet játszanak a tehetségtelenségi erők is. A centrifugális erő csak a helytől függ, s hozzáadható a tömeggyanás erőhöz; együtt biztosítják a forgatott rendszer adott helyén érvényes gravitációs gyorsulást. A Coriolis-erő merőben más típusú, mert sebességfüggetlen. Elterjedt hatása: az áramulatot tájáradálatos, pozitív forgatás esetén mindig a sebességtől jobbra mutat, arra merőlegségen (1.1 ábra). A két tehetségtelenségi erő közül tehát a Coriolis-hatás a lényegesebb, s meglepő jelen ségekre vezet (1.2 ábra). A vízzintes sűrűn zajló, kezdetben sugaras áramlást a Coriolis-erő elterjedt és ezzel körkörösségét alakít ki benne (1.3 ábra): cirkuláció tehát születhet vagy eltűnhet a forgatott folyadékon. Ez az elsődleges oka a légköri és óceáni örvényű mozgások látejításeinak.

A Coriolis-erő fontosságát az ún. Rossby-szám méri, mely megadja a Coriolis-erő súlyát a hidrodinamikai mozgást okozó erőhöz képest. Az olyan homogén közegei áramlásnak, amely egy függőleges tengely körül állandó Ω szögesbességgel forgatott edény (1.4. ábra) teljes L méretet kitölti és vízzintes átlagsebessége u, a Rossby-száma

$$Ro = \frac{U}{2|\Omega|L}$$

A Földre gondolva, edényünket egyelőre az Északi-sarkra ($\Omega > 0$) vagy a Déli-sarkra ($\Omega < 0$) képzeljük; a Föld gőrűdetére most még nem vesszük figyelembe. A Coriolis-erő akkor jelentős, ha a Rossby-szám kicsi. Az egyenlő kisebb Rossby-szám nemcsak a forgatás fontosságára utal, hanem arra is, hogy az áramlás érvényessége gyenge a forgatási szögesbességhez képest. Az azonos Rossby-számú, peremtől távoli áramlások hasonlóan viselkednek, akármekkora is sebességük, kiterjedésük, és forgatási gyorsulása külön-külön. A Rossby-szám függetlensége a sűrűségtől arra utal, hogy a forgatás szerepe egyaránt fontos mind vízben, mind levegőben.

Nagyléptékű környezeti áramlások adataival és a Föld naponkénti 1 fordulatnyi szögesbességevel a Rossby-szám 0,1 körüli vagy annál kisebb értéknek adódik. Az ilyen áramlásokban tehát a Coriolis-erő dominál, az a hatás, mely hétőszári életünkben olyan csekély, hogy (a Fönszabály-tinga elterjedt kivétélésével) nem is veszünk ráta tudomást. Ugyanakkor a viszkozitás hatása elnyésző, a közege a peremek (domborzat, hegyek, partvonalak) körülő keskeny sávok kivétélő fogalma, súlytalanítja a folyadék sebességét.

A Rossby-szám kicsinyese miatt a nagykádályú környezeti áramlások megértésében érdemes úgy eljárni, hogy először a szélsőséges esetet, az igen gyorsan forgatott közege viselkedését értjük meg. Ilyenkor kialakulhat egy, az együttjövő rendszerben időfüggő, stacionárius áramlás. Ebben a nyomási erő, mely a nyomás terhelése változásával, gradiensével arányos, pontosan kiegyenlít a Coriolis-erőt. Ezt az egységről nevezzük geostrofikusnak, a Föld forgásából származónak

3
(akkor is, ha laboratóriumi forgatott kisérletben áll be), s a kialakuló áramlást geostrofikus áramlásnak.

Mivel a Coriolis-erő merőleges a sebességre és egy eggyenes be esik a nyomásgradientessel, az áramlás sebessége merőleges a nyomás változásának irányára (1.8 ábra). Éles ellentében hétköz

napitaminasztalatunkkal, miszerint az áramlások arra haladnak, ahol kisebb a nyomás, a geostrofikus áram a nyomás változásra merőleges: állandó nyomású felületek, izobárok mentén történik. Pozitív forgatási irány esetén az áramlás irányába nézve, jobb oldalra esik a magasabb nyomás. Ez az orientációs szabály nem más, mint a szelekt nyírányára vontakozó régi meteorológiai megjelölés: a báríkus szélőrvény. Ha az északi féljömből húttal állunk a szélnek, akkor az akasos sebesség váltóegységek több bára helyezkednek el (1.9 ábra).

Körkörös, középén minimummal rendelkező nyomáseloszlás esetén, az áramlás pozitív körü

l járással (1.10 ábra) folya körü a báríkos nyomású központot. Ez megfelel egy ciklonban ta

paszthalató mozgásnak, mely pozitív Ω esetén az árammutató járásával ellentétes, negatív Ω esetén azzal megegyező. Nagy nyomású hely körül fordított, anticiklonális áramlás alakul ki. A ciklonok és anticiklonok tehát első közlekedésben geostrofikus egyensúlyban levő áramlások. (Egy nagyon gyorsan forgó bolygóon akár időben változatlanok is lehetnek. A földi szögessegből adódó 0.1

körüli Rossby-szám azonban elég nagy ahhoz, hogy ne zárja ki a középpontok lassú mozgását és a ciklonok és anticiklonok keletkezését vagy kihalását.) A gyenge vizszoítás következtében kialakuló összéáramlást (5fejezet) is figyelembe véve megkapjuk a ciklon és anticiklon jellegetes spirális áramlás képét (1.11,1.12 ábra).

A gyors forgatás másik fontos következménye az, hogy az áramlást kétdimenziósáv teszi. A Coriolis-erő mindig a vízszintes síkban hat, s ezért a vele egyensúlyba került nyomási erővel együtt ebben a síkban alakítja ki az áramlást. Akármilyen mély is a folyadék, geostrofikus egyensúlyban az egység alatti vízszintes rétegek azonosan mozognak, az áramlás oszlopszerű szekezt. A nyomás magasságfüggése ezért a hidrostatikai egyensúly törvényéből követi.

Az oszlopszerű szkezet kialakulása több egyszerű kisérlettel is demonstrálható. A gyorsan forgatott folyadékból juttatott festék rövid idő alatt függőleges felületek mentén oszlik szét (1.5 ábra). Az edény aljához rögzített korongot az áramlás megkerüli, a felette levő folyadékoszlop mintegy hozzáragad a koronghoz (1,6 ábra), de nem a viszkoztás, hanem a gyors forgatás következtében. Analog jelenségek a természetben is megjelenhetnek: a part túl távoli tengeráramlatok helyenként több km mélységig azonosan mozognak, a légköri mozgások közel kétdimenziósnak (1.7 ábra).

A forgatott folyadék kiv savanít az ún. tehetetlenségi hullámok továbbítják, melyek frekven-

ciája legfeljebb a forgatási frekvencia készszerese lehet, és függ a terjedés irányának a vízszintessel bezárt szögtől. Ez a hullám nem hangszerű, hanem diszperzív, azaz benne a különböző hullám-

hoszú összetevők más és más sebességgel terjednek. Ennek következtében a lokalizált hullámalakok mindig szétjögnak (1.17 ábra). A tehetetlenségi hullám olyan erősen diszperzív (1.15 ábra), hogy az energia a fázisbességére merőlegesen terjed (1.18-1.20 ábra).

 Forgatott közegek bármely pontja körüli kialakulhat olyan (nem geostrofikus) részcsekmozgás, mely pontosan körüljárt követ, a forgatási irányval ellentétesen, és éppen a forgatási periódusidő felének megfelelő periódussal (1.13 ábra). Ez az ún. tehetetlenségi körmozgás időnként megjegyelhető a tengeri vízstömegek mozgásában is (1.14 ábra). Ugyanakkor ez az alapja a tehetetlenségi hullámoknak is. Függőleges terjedés esetén, amikor a hullám frekvenciája a forgatási frekvencia készszerese, a részcsek keltehetetlenségi körmozgást végeznek a hullám sebességerőben, ferde terjedéskor pedig a fázisbességére merőleges síkban (1.16 ábra).

1.1 A Rossby-szám

Bevezetésként definiáljuk az egyenletesen forgatott homogén folyadéka jellemző legfontosabb paramétereket, és azokból levezetünk egy jellemző dimenziótlan mennyiséget, a Rossby-számot.
(C-G. Rossby (1898-1957) svéd meteorológus, a geofizikai folyadékinamika egyik megalapozója, a forgatással kapcsolatos sok jelenség első leírója.)

Tekintsünk egy homogén folyadéket, melyet időben állandó \(\Omega \) forgású szögebességgel forgatunk a függőleges tengely körül. A szögebesség előjele pozitív, ha a forgatás az űramutató járásával ellentéttes irányú. A Föld forgása az északi-féltekéről nézve tehát pozitív szögebességgel. Legyen \(L \) az áramlás lineáris mérete a vízszintes síkban, és \(U \) az áramlás jellegzetes vízszintes sebességének nagysága az együttforgó rendszerben. Ezekből a paraméterekből közvetlenül alkothatunk két idő jellegű mennyiséget. A \(t_f \) forgatási idő arányos a forgási szögebesség reciprokával:

\[
t_f = \frac{1}{|\Omega|}
\]
(a \(2\pi \)-t arányossági tényezőt nem írjuk ki, mert dimenziós megfontolásról van szó). Az áramlás \(t_h \) hidrodinamikai idejét úgy becsüljük, mint

\[
h = \frac{L}{U}
\]

Ha ez sokkal kisebb a forgási időnél, akkor az áramlást nyilván nem befolyásolja a forgás. Ilyenkor a forgás nagyon gyenge, és hatása sokkal hosszabb időskálan mutatkozik csak meg mint a hidrodinamikai idő. Ha viszont hosszabb az áramlás ideje, mint a forgási idő, akkor a forgatás szerepe lényeges az áramlásban.

A \(Ro \) Rossby-szám a forgási és a hidrodinamikai idő \(t_f/t_h \) arányát adja meg. Szokásos definiciója\(^1\)

\[
Ro \equiv \frac{U}{2|\Omega|L}
\]

Ha a Rossby-szám sokkal kisebb, mint 1, akkor a forgatás hatása dominál.

A Föld forgásának a szögebessége \(\Omega_F = 2\pi/nap \), a bolygókon zajló áramlásokra nézve univerzális állandó:

\[
\Omega_F = 7,3 \times 10^{-5} 1/s.
\]

Ez nagyon alacsony frekvenciának felel meg. Hagyományos, nem forgatott laboratóriumi kísérletekben, ahol a lineáris méret \(m \), a sebesség \(m/s \) nagysággrendű, a Rossby-szám \(10^4 \) körüli, azaz ilyenkor a Föld forgásának hatása jogosan hangsúlyos el\(^2\).

Merőben más a helyzet nagy skálájú földi áramlásokban. Elsőként tekintsünk egy ciklont (1 ábra). A ciklonok több országnnyi kiterjedésűek, tehát mérettük vehető \(L = 1000 \) km-nek. Bennük az áramlás sebessége \(U = 10 \) m/s körüli (ez \(36 \) km/ora sebességű szelet jelent). Ezekből a paraméterekkel a Rossby-szám \(Ro = U/(2\Omega_F L) = 0,07 \).

Egy óceáni példa a Golf-áramlat leszakadó örvényeinek mozgása (2 ábra), melyek mintegy \(L = 100 \) km átmérőjűek, s bennük a körleti sebesség \(U = 1,3 \) m/s = \(5 \) km/h (ugyanannyi, mint magának a Golf-áramlatnak a sebessége, mely a Duna áramlás sebességével megegyező). Ezzel \(Ro = 0,09 \). Az egész óceáni medencékre kiterjedő áramlások jóval lassabban és egyben nagyobb kiterjedésük. Jellegzetes adataik \(U = 0,1 - 0,01 \) m/s, \(L = 4000 \) km, ezért a hozzájuk tartozó Rossby-szám két-három nagyságrenddel kisebb.

\(^1\)A nevezőbeli 2-es faktor dinamikai megfontolások (1. (1.9)) indokolják.

\(^2\)Ezért nem a Föld forgása az elsődleges meghatározója a házatartási vízlelőköbb megfigyelhető forgásírányának (csak akkor lenne az, ha minden más hatást, pl. a peremeket egy erre a célra tervezett kísérletben gondosan kiküszöbölőnék).
Számos más példa is azt mutatja, hogy a nagy skálájú környezeti áramlásokban a Rossby-szám egyenlő határozottan kisebb, azaz azokban a forgatás hatása jelentős. Érdemes megjegyezni, hogy olyan esetekben, amikor L összemerőhető a Föld \(R_F = 6370 \) km sugarával, mint a ciklon példájában, a Rossby-szám kicsineként vegyük az azt jelenti, hogy az áramlás sebessége sokkal kisebb, mint az Egyenlőti menti \(R_F \Omega_F = 1670 \) km/h kerületi sebesség.

Érdemes röviden megbecsülni az atmoszférával rendelkező bolygók jellegzetes áramlásainak Rossby-számait. A Vénusz sugara összemerőhető a Föld körével \((R_V = 6050 \text{ km}) \), forgása viszont igen lassú: periódusideje 243 nap, azaz frekvencia \(\Omega_V = 3 \cdot 10^{-7} \text{ /s} \). \(U = 10 \text{ m/s} \) felszínű szélesebséggel számolva az \(L = 1000 \text{ km-es skálan} \ Ro = 16 \). A Vénusz áramlásaiban tehát a forgás nem játszik lényeges szerepet. A Mars sugara a földinek mintegy fele \((R_M = 3400 \text{ km}) \), forgásideje alig fel áraval hosszabb egy napnál: \(\Omega_M = 7 \cdot 10^{-5} \text{ /s} \). A típikus szélesebség itt is \(U = 10 \text{ m/s} \), mellyel az \(L = 1000 \text{ km-es skálan} \ Ro = 0,07 \). A Jupiter sugara több, mint 10-sze- rese a Földének, keringési ideje viszont alig 10 óra: \(\Omega_J = 2 \cdot 10^{-4} \text{ /s} \). Az áramlások jellegzetes lineáris méréte ezért egy nagyságrenddel nagyobbán, \(L = 10000 \text{ km-nek vehető, de a sebességek} \) is nagyobbak, \(U = 100 \text{ m/s}. \) Igaz összességében a Rossby-szám a Föld légkörére jellemzőnél valami-ivel kisebb, \(Ro = 0,024 \). A többi óriásbolygón az áramlások még gyorsabbak, sugarak kisebb, de forgásidejük körülbelül ugyanakkora, ezért Rossby-számuk valamiivel nagyobbak.

Végül megadjuk a Rossby-szám egy másik jelentését is. Ez az örvényesség főgálmával kapcsolatos. Egy áramlást a \(\omega(r,t) \) sebességeloszlással jellemzőnek, azaz megadjuk a sebességet minden \(r \) pontban és \(t \) pillanatban. Ehhez egy \(\omega(r,t) \) örvénytér is tartozik. Az \(\omega \) örvényesség nem más, mint a sebességőr rotačjába \((\omega = \text{rot}\ \nu) \). Az örvényvektor dimenziója \(U/L \), tehát ez a mennyi- ség éppen frekvencia egységekben mérendő, mint a forgás szögebségesse. Átlaga becslhető \(U/L \)-ként, s ezért írhatjuk, hogy

\[
Ro = \frac{\text{átlagos örvényesség}}{2 |\Omega|}. \tag{1.5}
\]

A Rossby-szám tehát az átlagos örvényesség és a forgás szögebségesse viszonyát is megadja.

1.2 A Coriolis-hatás

A forgatott rendszerben mozgó testek külső erőhatás nélküli gőrült pályán mozognak, hiszen a rendszer "elfordul" alattuk. Az együttható megfigyelő számára ez úgy érthetőhöz, hogy a valódi erőkön kívül hatnna kell egy látszólagos, vagy tehetszüksége se erőnek is. A szabad moz- gás pályájának gőrültét okozó eltérítő erőt első leírójától Coriolis-erőnek nevezzük. A pozitív irányban forgó rendszerben az eltérülés jobbra történik. A test lemarad a koordinátarendszer pontjairól képest, annál jobban, mindig nagyobb az \(\Omega \) forgatási szögebségal \((1.1 \text{ ábra}) \).

A Coriolis-erő nagyságát legegyesüriből egy \(\Omega \) szögebséggel forgatott \(r \) sugárú korong középpontjából \(r \) sebességgel elindított golyó mozgása alapján határozhatjuk meg. Elhanyagolható surlódás esetén a golyó \(t = r/v \) idő alatt éri el a korong peremét, de nem abban abban a pontban, ahova elindultakor várult volna, a korongon egyenesvonalú egyenletes mozgást feltételeze. Az eltérülés a korong \(r \) idő alatt \(\Omega t \) szögsebességéből adódik, mely a kerület mentén \(r \Omega t \) távolságnak felé. Az eltérülést tehát arányos a sebességgel. Ez értelmezhető úgy is, mint egy gyorsulás következtében létrejövő elmozdulás. Egyenletes gyorsulást feltételezve, a kerületi gyorsulás \(a_C t^2/2 \) alakban írható, ahol \(a_C \) az eltérítő Coriolis-erő által okozott gyorsulás. Ebből

\[
a_C = 2\Omega r/t = 2\Omega v. \tag{1.6}
\]

\(^3\)Kis káljájú környezeti jelenségeben a Rossby-szám lehet nagy is. Ilyen pl. egy tornadó áramlása, ahol az átmérő esetekben néhány 100 méter, \(s U = 40 \text{ m/s} \)-al számolva, a Rossby-szám 2000-nél is nagyobbnak adódik.
A gyorsulás tehát arányos a sebességgel is, a Coriolis-erő csak mozgó testekre hat, értéke független a helytől.

1.1 ábra: Az Ω pozitív szögebességgel forgatott r sugarú korongon v sebességgel sugárirányba meglökött golyó eltérülése a Coriolis-erő következményeként értelmezhető. A peremen észlelt ívhosszeltérés a célponthoz képest $r\Omega r/v$, mert az álló koordinátarendszerbeli pálya (szaggattott vonal) $\Omega r/v$ szög képp fordult el a korongról nézve. Ezt ugyanannyi idő alatt egy $a_C = 2\Omega v$ nagyságú állandó kerületi gyorsulás, a Coriolis-gyorsulás hozzá létre, mely a pillanatnyi sebesség irányától jobbra mutat.

A Coriolis-erő a mozgás sebességeinek abszolútértékét nem változtatja, merőleges a sebesség irányára, és nyilván merőleges a forgástengelyre is. Vektoriális írásmodban a \mathbf{v} sebességgel mozgó test Coriolis-gyorsulása

$$a_C = -2\Omega \times \mathbf{v}. \quad (1.7)$$

Az Ω szögebességvector a forgástengely irányába mutat. A negatív előjel fejezi ki azt, hogy a gyorsulás a pillanatnyi sebességtől jobbra mutat pozitív forgatási szögebesség esetén. Ha a forgástengely a z-tengely, s az x és y irányú sebességkomponenseket u-val, ill. v-vel jelöljük, akkor a Coriolis-gyorsulás komponensei

$$a_C = (2\Omega u, -2\Omega u, 0). \quad (1.8)$$

Az x tengely irányú gyorsulás tehát a sebesség y-komponensével, az y irányú pedig az x komponens elmentettével arányos.

Az elődögek alapján azt mondhatjuk, hogy a Rossby-szám az a_h hidrodinamikai gyorsulás és az a_C Coriolis-gyorsulás hányadosa. Az előbbi ugyanis az áramlás sebesség időbeli változása, s becsülihető mint U/t_h, mely a hidrodinamikai idő (1.2) kifejezése alapján $a_h = U^2/L$. Az a_h/a_C arány tehát a Rossby-szám:

$$Ro = \frac{\text{hidrodinamikai gyorsulás}}{\text{Coriolis-gyorsulás}}. \quad (1.9)$$

Az U sebességgel nyugatra haladó test az L hosszúsággal kelet-nyugati elmozdulás során δL távolsággal térül az Egyenlítő felé. Amennyiben az eltérés kicsi, a mozgás ideje $t = L/U$, és $\delta L = a_Ct^2/2 = \Omega F L^2/U$. A relatív eltérülés tehát

$$\frac{\delta L}{L} = \frac{\Omega F L}{U} = \frac{1}{2Ro}.$$

(1.10)
A néhány km-es távolságokon, szokásos szélsebességgel az eltérülés elhanyagolhatóan kicsi. A síkvidéki nagy tavak felett azonban az eltérülés már jól megfigyelhető ($U = 10$ m/s, $L = 2 \cdot 10^4$ m mellett $\delta L/L = 0,14$, l. 1.2 ábra). Még nagyobb skálán a Coriolis-erőnek tulajdonítható a mérsékelt egőben uralkodó nyugati szélirány is (l. 3.6 fejezet).

1.2 ábra: A nyugatról érkező szél az északi feltekén déli irányba fordul a síkvidéki tavakon történő áthadaláskor. A tó felett felgyorsuló áramlást a Coriolis-erő jobbra téríti el, amíg a tóoldalra nem ér, ahol a felszíni surlódás ismét lelassítja.

A forgatott rendszerek egyik eredkes és fontos hidrodinamikai tulajdonsága, hogy bármilyen függőleges áramlás örvényességét hoz létre. Ha például valamely leáramlás egy adott szinten összefolyást okoz, mely kezdetben a középpont felé ivatal, akkor a Coriolis-gyorsulás minden folyadék részecskét eltérít. Így az eredetileg radiális áramlásban az erre az irányra merőleges mozgás, forgás, cirkuláció is megjelenik. A kezdetben örvényentes áramlás ötvönyessé válik (1.3 ábra). Ez a folyamat fontos szerepet játszik a hurrikánok, másném trópusi ciclonok kialakulásában. A felszínen felmelegedett levegő gyors konvekciós feláramlása az északi feltekén mindig pozitív, a délin mindig negatív ötvönyességgel társul.

1.3 ábra: A le-, vagy feláramlás következtében adott szinten történő szétterülő áramlás nem maradhat sugárirányú a folyadék részecskékre ható Coriolis-erő miatt. Pozitív forgásirány mellett összefolyást pozitív cirkulációt vagy ötvönyességet hoz létre (a), szétáramlás pedig negatívát (b). A szaggatott vonalak a kezdeti (vagy a forgatás nélküli) áramlást mutatják.

1.3 A Rossby-szám kicsinységének jelentése

Kis Rossby-szám esetén gyorsan forgatott rendszerről van szó. A

$$Ro \ll 1$$

feltétel azt jelenti, hogy az (1.1) forgási idő sokkal rövidebb az áramlás globális viselkedését jelentő (1.2) hidrodinamikai időnél, vagyis

$$|\Omega| \gg \frac{U}{L}.$$
Első hallásra ellentmondásnak tűnhet, hogy bár a Föld lassan forog, hídrodinamikája mégis egy gyorsan forgatóttn rendszeré. Laboratóriumban kis Rossby-számot biztosíthatunk, ha például egy \(L = 1 \) méteres edényt, melyben az áramlás sebessége \(U = 1 \) cm/s, percenként 1 fordulattal forgatunk. Ekkor \(2|\Omega| = 0,21/s \), s ezért \(Ro = 0,05 \). Ez a szögebbesség több mint ezerszer gyorsabb a Föld szögebbességénél. A látzólagos ellentmondás abban rejlj, hogy nem a laboratóriumi és a földi szögebbességet kell közvetlenül összehasonlítanunk, hiszen az áramlások egyéb adatai is mások. A dinamikai szempontból érzékenység esetén a szögebbességet az adott rendszerbeli áramlás karakterisztikus frekvenciájához, \(U/L \)-hez viszonyítjuk. Tehát hiába kicsi az \(\Omega_F \) számértéke (sokkal kisebb a hang frekvenciájánál), mégis sokkal nagyobb a környezeti áramlások jellegzetes frekvenciájánál.

A Bevezetésben említtet tulajdonság, miszerint a földi környezeti áramlások időskálái emberi léptékűek, a távolsgalaták viszont a méternél jóval hosszabbak, következik a Rossby-szám kicsínységéből és az \(U = 5 \) km/h tipikus áramlás sebességből. Mivel \(1/(2\Omega_F) \) körülbelül 2 óra, \(Ro = 0,1 \) esetén \(L/U = 20 \) óra, melyhez \(L = 100 - 1000 \) km tartozik.

A Rossby-szám örvényességgel kapcsolatos (1.5) jelentése alapján, \(Ro \) kicsínysége azt jelenti, hogy az áramlás örvényessége kicsinyebb, mint a Föld forgás sebessége. Az örvényesség komponensei közül a forgástengelyel párhuzamos \(\zeta \approx U/L = 2|\Omega|Ro \) vetület a legfontosabb. Gyorsan forgatott folyadékban tehát fennáll, hogy

\[
|\zeta| \ll |2\Omega|.
\] (1.13)

E jelentés szerint tehát a gyengén örvényes áramlások tartoznak a kis Rossby-számú áramlások köré.

A Rossby-szám kicsínysége egyben az

\[
a_C \gg \frac{U^2}{L}
\] (1.14)

feltételez adja. Ilyenkor tehát a Coriolis-gyorsulás jóval nagyobb az áramlás sebesség időbeli változásánál. A kis Rossby-szám határeset tehát időben *lassan* változó áramlásokat jelent. Körkörös áramlásokban, melyek sugara \(L \) nagyságrendű, \(U^2/L \) egyben a folyadékrészek centrifugális gyorsulás, s a fentiak szerint az is kicsi.

A Rossby-szám kicsínysége tehát egyszerre jelenti a forgatás gyorsaságát a hídrodinamikai időskálán, az örvényesség gyengeségét a forgatás szögebbességehöz viszonyítva, és azt, hogy a Coriolis-gyorsulások közepest a hídrodinamikai és a centrifugális gyorsulás elhanyagolható.

1.4 A hídrodinamikai mozgásegyelet

A kvalitatív kép után rátérünk a mozgásegyelet levezetésére állandó szögebbességgel forgatott rendszerben, melyben a Föld görbületét egyelőre nem vesszük figyelembe. Tekintsünk egy homogén, izotróp folyadékkal töltött vízzítes aljzat edényt, melyet \(\Omega \) állandó szögebbességgel forgatunk egy függőleges tengely körül (1.4. ábra). A Földre gondolva, képletél a homogén áramlások esetén a megfigyelő őhatatlanul együtt forog a közeggel. Legyen \(\mathbf{v} \) a sebességkezdőzás ebben a leírásban. A folyadékrészekre fűlépítő Newton törvényét. Célzerű a forgó rendszerhez rögzített leírást használnunk, mert a földi áramlások esetén a megfigyelő űhatatlanul együtt forog a közeggel. Legyen \(\mathbf{f} \) a sebességkezdőzás ebben a leírásban. A folyadékrészekre együttest forgó rendszerbeli \(\rho \frac{dv}{dt} \) gyorsulásának és \(\rho \) sűrűségnéb szorzata az erősírásé (egységnyi térfigatra ható erők) eredőjével egyezik meg, amely az inercigrendszerbeli \(\mathbf{f} \) erősírásé kívül tartalmazza a \(\mathbf{f} \) tehetetlenségi erősírásé jelet is

\[
\rho \frac{dv}{dt} = \mathbf{f} + \dot{\mathbf{f}}.
\] (1.15)
1.4 ábra: Folyadék függőleges tengely körüli forgatott edényben. A \(H \) átlagos mélység összemerhető a vízszintes \(L \) mérettel.

Az inerciarendszerbeli \(\mathbf{f} \) erő a \(\mathbf{f}_{gr} \) gravitációs erő téréfogati sűrűségből és a félületi erőkből adódik. Ezek a \(p \) nyomásból származó \(\mathbf{f}_p = -\text{grad} \) nyomási erő, és az \(\mathbf{f}_v = \lambda \Delta \mathbf{v} + \lambda \text{grad} \text{div} \mathbf{v} \) viszkozus erő. Viszkozus félzés az egymás felületi folyadékretégek közötti sebességkülönbség, azaz a sebességinhomogenitások miatt lép fel. Ítt \(\lambda \) a dinamikai viszkozitás, \(\tilde{\lambda} \) a második belső surlódási együttható, és \(\Delta = \text{div} \text{grad} \) a Laplace-operátor. Összesen

\[
\mathbf{f} = \mathbf{f}_{gr} - \text{grad} p + \lambda \Delta \mathbf{v} + \lambda \text{grad} \text{div} \mathbf{v}. \tag{1.16}
\]

Az \(\mathbf{f}_f \) tehetséges erő az \(\mathbf{f}_C = \rho \mathbf{a}_C \) Coriolis-erő és a \(\mathbf{f}_{cf} \) centrifugális erő összege. A Föld felgázának időbeli hasulása vagy a Nap körüli pálya görbületéből adódó gyorsulás olyan kis, hogy az azokból adódó tehetséges erők elhanyagolhatók. A (1.7) Coriolis-gyorsulást felhasználva a tehetséges erők eredője

\[
\mathbf{f}_f = -\rho \Omega \times \mathbf{v} + \mathbf{f}_{cf}. \tag{1.17}
\]

A gravitációs és a centrifugális erősörség alakja külön-külön nincs szükségünk, hiszen a hidrodinamikai egyenletben az összegük szerepel, mely az egységnyi téréfogatú folyadékelem súlya:

\[
f_{gr} + f_{cf} = \rho \mathbf{g}, \tag{1.18}
\]

ahol \(\mathbf{g} \) a helyi gravitációs gyorsulás.

A teljes mozgásegyenlet tehát

\[
\rho \frac{d\mathbf{v}}{dt} = -2\rho \Omega \times \mathbf{v} - \text{grad} p + \rho \mathbf{g} + \lambda \Delta \mathbf{v} + \lambda \text{grad} \text{div} \mathbf{v}. \tag{1.19}
\]

Mivel a \(\mathbf{v}(\mathbf{r}, t) \) sebességet az \(\mathbf{r} = (x, y, z) \) hely és a \(t \) idő térmenységének tekintjük, a folyadékelem teljes gyorsulása a helyi és az advekciós gyorsulás összege:

\[
\frac{d\mathbf{v}}{dt} \equiv \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \text{grad}) \mathbf{v} \equiv \frac{\partial \mathbf{v}}{\partial t} + u \frac{\partial \mathbf{v}}{\partial x} + v \frac{\partial \mathbf{v}}{\partial y} + w \frac{\partial \mathbf{v}}{\partial z}. \tag{1.20}
\]

A háromdimenziós sebességre a továbbiakban a \(\mathbf{v} \equiv (u, v, w) \) jelölést használjuk. Amikor a vízszintes síkbeli komponensekről beszélünk csak, akkor az \(\mathbf{u} \equiv (u, v) \) jelölést alkalmazzuk. A fenti (1.19,1.20) összegegységek jelentik a forgatott rendszerekben érvényes Navier–Stokes-egyenletet.

A legkörüli és a vízi jelenségek hasonlósága nyilvánvalóvá válik, ha elfogadjuk, hogy legtöbbjük leírható az összennyomhatatlan folyadék közelítésben. Ez mindaddig helyes, amíg az áramlás sebessége sokkal kisebb, mint a hangsebesség (mely levégebben 1200 km/óra és vízben mintegy négy-szer akkora, l. 14.1 táblázat). Mivel a legerősebb szélvihar is csak néhány száz km/óra sebességű, a feltétel rendszerint jó közelítéssel teljesül, és ezért a továbbiakban mindig összennyomhatatlan
közegeket vizsgálunk. Így természetesen bizonyos folyamatokat nem tudunk leírni, mint pl. a csapadékképződést.\footnote{Használni fogjuk azonban azt az egyszerű megfigyelést, hogy a felszálló légáramlatok felhőképződésre vezetnek, hiszen ekkor nagy nedvességtartalmú levegő kerül alacsonyabb hőmérsékleti környezetbe, ahol kicsapódik. A felhők egyben a légkörű áramlások nyomulódóinak is tekinthetőek, s hasonló szerepet játszhat a tengeri ill. tavi mezőkben a planktonföldön.}

Osszenyomhatatlan, homogén közegeben a sűrűség térben és időben konstans, $\rho \equiv \rho_0$. Az anyagnegmaradást kifejező

$$\frac{\partial \rho}{\partial t} + \text{div}(\rho \mathbf{v}) = \frac{d \rho}{dt} + \rho \text{div} \mathbf{v} = 0$$

(1.21)

kontinuitási egyenletből látszik, hogy ekkor a sebességtérről divergenciamentesnek kell lennie:

$$\text{div} \mathbf{v} \equiv \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$ \hspace{1cm} (1.22)

Osszenyomhatatlan közegeben ezért a második belső sűrűség együtthatóval kapcsolatos viszkozitási erő eltűnik. A $\rho = \text{állandó}$ feltétel egyben a termodynamikai állapotegyenlet szerepét játssza.

Mivel \mathbf{g} a Föld felületén vagy a forgatott edényben meredő gravitációs gyorsulás, kifejező a lokális függőleges irányt. Coordinátarendszerünk z tengelyét mindig függőlegesnek, \mathbf{g}-vel ellentétes irányúnak választjuk\footnote{A 1.4.2.1. kifejezésben ez, a kialakuló parabolaprofil miatt azt jelenti, hogy a lókális z tengelyt mindenütt a parabolára merőlegesen irányítjuk. A helyfűggés akkor hangyakható el, ha az elény perénén fellépő $L \Omega^2/2$ centrifugális gyorsulás jóval kisebb g-nél, azaz $\Omega \ll (g/L)^{1/2}$, amit a továbbiakban felteszünk. A (1.3) és (1.27) definiációkkal ez annak felel meg, hogy $Ro \gg Fr$.}. Ez egyben megegyek a Ω szögebbesség vektor irányával. Az osszenyomhatatlan közegekre vonatkozó alapegyenletünk tehát a (1.19) Navier-Stokes-egyenlet sűrűséggel való osztása után

$$\frac{d \mathbf{v}}{dt} = -2\Omega \mathbf{n} \times \mathbf{v} - \frac{1}{\rho_0} \text{grad} p - \mathbf{g} \mathbf{n} + \nu \Delta \mathbf{v}.$$ \hspace{1cm} (1.23)

Itt megjelent a $\nu = \lambda/\rho_0$ kinematikai viszkozitás, ami jó közvetítéssel állandó. Az \mathbf{n} függőleges (z) irányú egységvektor megadja mind a forgási szögebbesség, mind a gravitációs gyorsulás irányát. Álló határfelületen a sebességvektorom el kell tűnnie, mozgó fal esetén a fal sebességét kell felvennie\footnote{A viszkozitás tag elhanyagolásával kapott Euler-egyenletben mindegy a felületre merőleges komponensekre érvényes.}. Ezzel és a nyomásra vonatkozó peremfeltételel a forgó rendszerbeli $\mathbf{v}(\mathbf{r}, t)$ és $p(\mathbf{r}, t)$ sebesség-, ill. nyomáskocelel adott kezdőfeltételből egyértelműen megkapható. Az (1.22), (1.23) egyenlet közvetlenül a sebességre vonatkozik. A nyomás tehát nem dinamikai változó abban az értelmében, hogy időfüggését külön egyenlet szabályozna. A nyomásnak önkonzisztensen kell változnia úgy, hogy a (1.23) egyenlet minden pillanatban fennálljon. A nyomás jellegzetes értékét is tehát az áramlási paraméterek szabják meg.

\subsection*{1.5 A dimenziótlan alak}

Ahhoz, hogy meg tudjuk becsülni, melyik tag, mikor jelentős, érdemes az (1.23) egyenletet dimenziótlan alakba átírni. Mérjük a távolságot az L jellemző lineáris kiterjedés egységében, a
sebességet a U karakterisztikus vízszintes sebesség egységében, ekkor az időegység értelmezésre-
en $t_h = L/U$. A nyomás kialakulásában a Coriolis-erő nyúlvánvalóan fontos, ezért mértékegységét
$2\rho_0|\Omega|LU$-nak választjuk. Létni fogjuk, hogy ezzel azt fejezzük ki, hogy a nyomási erő és a Cori-
lolis-erő összefüggéseik. A csillaggal jelölt dimenziótlan mennyiségek tehát így függenek össze
z az eredeti dimenziós mennyiségekkel:

$$\mathbf{r} = L\mathbf{r}^*, \quad \mathbf{v} = U\mathbf{v}^*, \quad t = \frac{L}{U}t^*, \quad p = 2\rho_0|\Omega|LUp^*.$$ (1.24)

A (1.23) egyenletbe ezt behelyettesítve

$$\frac{U}{L/U} \frac{d\mathbf{v}^*}{dt^*} = -2\Omega U \mathbf{n} \times \mathbf{v}^* - \frac{2\rho_0|\Omega|LU}{\rho_0L} \text{grad}^* p^* - g\mathbf{n} + \frac{\nu U}{L^2} \Delta^* \mathbf{v}^*.$$ (1.25)

Itt felhasználtuk, hogy a gradiens és a Laplace-operátor képzése egy, ill. kétszeres térbeli derivá-
lással jár, ami dimenzióban L, ill. L^2-tel való osztás. A csillaggal jelölt operációk a dimenziótlan
térbeli változókra vonatkoznak. Az egész egyenletet U^2/L-lel osztva

$$\frac{d\mathbf{v}^*}{dt^*} = -2\frac{\Omega L}{U} \mathbf{n} \times \mathbf{v}^* - \frac{2|\Omega|L}{U} \text{grad}^* p^* - \frac{gL}{U^2} \mathbf{n} + \frac{\nu}{UL} \Delta^* \mathbf{v}^*.$$ (1.26)

Vegyük észre, hogy a jobb oldal minden tagja előtt megjelent egy dimenziótlan szám. Az első
két tag előtt a (1.3) Rossby-szám reciproka áll. A harmadik és negyedik tag előtt pedig az

$$Fr = \frac{U}{\sqrt{gL}}$$ (1.27)

Froude-szám és az

$$Re = \frac{UL}{\nu}$$ (1.28)

Reynolds-szám jelenik meg. A csillagokat ezután elhagyniuk, mert a dimenziótlan számok egyértel-
mően mutatják, hogy a dimenziótlan egyenletre van szó. A dimenziótlan Navier-Stokes-egyenlet

$$\frac{d\mathbf{v}}{dt} = -\frac{1}{\rho_0} (\pm \mathbf{n} \times \mathbf{v} + \text{grad} p) - \frac{1}{Fr^2} \mathbf{n} + \frac{1}{Re} \Delta \mathbf{v}.$$ (1.29)

Mivel a Rossby-szám csak a szöge sebesség abszolútértékét tartalmazza, megjelent a vektorszorzat-
ban egy \pm tényező. A felső előjel tartozik a pozitív forgásirányú esethez. A (1.24) megfeleltetéstől
a (1.29) egyenlet levezetést igazolva meghoztuk meg, hogy az

$$\mathbf{r} = L\mathbf{r}, \quad \mathbf{v} = U\mathbf{v}, \quad t = \frac{L}{U}t, \quad p = 2\rho_0|\Omega|LUp$$ (1.30)

át helyettesíti a dimenziótlan (1.29) Navier–Stokes-egyenletre vezet.

A dimenziótlan számok az egyes tagok súlyát határozzák meg a mozgásanélkülben, mivel
da dimenziótlan gysorolások általában egységes átalakítók. Két áramlást akkor tekintené-
hünk hasonló, ha geometriájuk hasonló (tehat pl. azonos formájú akadályon van bennük) és, ha
mindegy dimenziótlan számuk, tehát Ra, Fr és Re azonos. Ilyenkor ugyanis a peremek egy-
szerű transzformációnál egységesen változhatok, ezért a dimenziótlan peremfeltételek azonosak, s a

7 Ez a válászás nem tartja a forgatás kikapcsolásakor, amikor $\rho_0 U^2$ a természetes egység.
8 Ilyen dimenzióális megjegyzés, hogy az $\frac{U^2}{(gL)}$ mennyiséget tekintsük a gravitációs hatásra

dellű karakterisztikus számának, az (1.29) válászás a hagyományos.
dimenziótlan mozgásegynyletek is megégeznek. A megoldások ekkor csak arányossági tényezőkben térhetnek el egymástól. Ez a feltétel szabja meg tehát azt is, hogy nagyskálájú környezeti áramlások mikor modellezhetőek híven laboratóriumi kérdésekkel.

A levezetés azt sugallja, hogy mindegyik szám gyorsulási hányadosaként is előáll. A Rossby-szám kapcsán ezt már lattuk is (1.9)-ben. Hasonlóan, a Froude-szám négyzete az \(a_h = U^2/L \) hidrodinamikai és a \(g \) gravitációs gyorsulás aránya:

\[
Fr^2 = \frac{\text{hidrodinamikai gyorsulás}}{\text{gravitációs gyorsulás}},
\]

(1.31)

a Reynolds-szám pedig a hidrodinamikai gyorsulásnak a \(\nu U/L^2 \) visközus gyorsulásához való viszonyát adjá,

\[
Re = \frac{\text{hidrodinamikai gyorsulás}}{\text{visközus gyorsulás}},
\]

(1.32)

A mellékelt táblázatban feltüntetjük e három paraméter értékét egy ciklon és a Golf-áramlat gyűrűnek típusú pokláján (a kinetikai viszkozitást az \(1,5 \cdot 10^{-5} \) m²/s, ill. \(10^{-6} \) m²/s értékekkel számoltuk, l. 14.1 táblázat)

<table>
<thead>
<tr>
<th>Ciklon</th>
<th>Ro</th>
<th>Re</th>
<th>Fr</th>
<th>L (km)</th>
<th>U (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,0 (\cdot 10^{-2})</td>
<td>6,6 (\cdot 10^{11})</td>
<td>3,2 (\cdot 10^{-3})</td>
<td>1000</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Golf</td>
<td>9,0 (\cdot 10^{-2})</td>
<td>1,3 (\cdot 10^{11})</td>
<td>1,3 (\cdot 10^{-3})</td>
<td>100</td>
<td>1,3</td>
</tr>
</tbody>
</table>

1.1 Táblázat: A ciklon és a Golf-áramlat gyűrűnek jellemző dimenziótlan számok, hossz-, és sebességadatai.

A legegyszerűbb hidrodinamikai esetet akkor kapnánk, ha mind a három szám értéke nagyon nagy lenne, hiszen ez a nem forgatott (\(Ro = \infty \)), ideális (\(Re = \infty \)) és súlytalan (\(Fr = \infty \)) folyadék egyenletét jelentené. A dimenziótlan számok végessége tehát annak mértékét fejezi ki, hogy mennyire térünk el ettől a homogén áramlástól.

A táblázat azt mutatja, hogy a Reynolds-szám igen nagy, tehát a súrlódás szempontjából közel vagyunk az ideális esethez: a viszkozitás a peremektől távol ezért jogosan hanyagolható el. A Rossby-szám kicsinysege, amint már szó volt róla, a forgatás fontosságára utal. Ugyanakkor a Froude-szám is kicsi, tehát messze vagyunk a súlytalan folyadék esetétől. Vegyük észre azonban, hogy a síly csak a függőleges irányú mozgást befolyásolja, melyre egyáltalán nincs hatással a Coriolis-erő. A viszszintes síkban történő áramlás szempontjából ezért a nyomás kívül a Coriolis-hatás a legjelentősebb, s mindkettő 1/Ro-val arányos.

1.6 Dinamikai nyomás

Mivel a Froude-szám csak konstansnak szorozdik az (1.29) Navier-Stokes-egyenletben, a vele arányos tag könnyen kiküszöbölhető. A síly miatt akkor is helyfüggő a nyomáseleszálás, ha nincs áramlás. A \(\mathbf{v} \equiv 0 \) nyugalmi állapothoz az (1.23) egyenlet szerint egy \(p_0(z) \) hidrosztatikai nyomás tartozik, melyre

\[
\frac{dp_0}{dz} = -\rho g.
\]

(1.33)

Ennek megoldása \(p_0(z) = p_0 - \rho g z \), ahol \(p_0 \) a helytől függően konstans. Áramlás jelenlétében ezért célzó a teljes \(p \) nyomást a hidrosztatikai elecszál és egy új tag összegére bontani, s azt írni, hogy

\[
p(r,t) = p_0(z) + p'(r,t).
\]

(1.34)
Mivel az áramlást a p' nyomás-eltérés okozza, ezt a mennyiséget dinamikai nyomásnak nevezzük. Ezzel a nyomási erő okozta gyorsulás

$$\frac{1}{\rho_0} \text{grad} p = g n - \frac{1}{\rho_0} \text{grad} p', \quad (1.35)$$

vagyis a dinamikai nyomás gradiensének első két komponense ugyanaz, mint a teljes nyomásé, a függőleges komponensben pedig éppen a gravitációs erő köztük a különbség. A dinamikai nyomással kifejezett Navier-Stokes-egyenletben a g gravitációs gyorsulás tehát nem jelenik meg:

$$\frac{d\mathbf{v}}{dt} = -2\Omega \times \mathbf{v} - \frac{1}{\rho_0} \text{grad} p' + \nu \Delta \mathbf{v}. \quad (1.36)$$

A komponensekben történő feliráshoz használjuk a Coriolis-gyorsulás (1.8) alakját:

$$\frac{du}{dt} = +2\Omega v - \frac{1}{\rho_0} \frac{\partial p'}{\partial x} + \nu \Delta u, \quad (1.37)$$
$$\frac{dv}{dt} = -2\Omega u - \frac{1}{\rho_0} \frac{\partial p'}{\partial y} + \nu \Delta v, \quad (1.38)$$
$$\frac{dw}{dt} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial z} + \nu \Delta w. \quad (1.39)$$

A (1.30) szerinti dimenziótlan alak

$$Ro \frac{du}{dt} = \left(\pm v - \frac{\partial p'}{\partial x} \right) + Ro \frac{\Delta u}{Re}, \quad (1.40)$$
$$Ro \frac{dv}{dt} = \left(\mp u - \frac{\partial p'}{\partial y} \right) + Ro \frac{\Delta v}{Re}, \quad (1.41)$$
$$Ro \frac{dw}{dt} = \left(-\frac{\partial p'}{\partial z} \right) + Ro \frac{\Delta w}{Re}. \quad (1.42)$$

Innét látszik, hogy az (1.30)-ban használt $2\rho_0^2|\Omega|UL$ valójában a dinamikai nyomás jellemző nagysága, s nem a $p_0(z)$ hidrosztatikai nyomás. Az utóbbi nagysága $\rho_0 gH \approx \rho_0 gL$. A dinamikai nyomás mérőszáma $2\rho_0^2|\Omega|UL = \rho_0 g LF^2/Re$, vagyis a dinamikai és a hidrosztatikai nyomás viszonya Fr^2/Re, ami Fr kicsinyéhez miatt kicsi. Az (1.40)-(1.42) egyenletekből az következik, hogy elhanyagolható viszkozitás esetén a folyadék belsejében zajló mozgások szempontjából a Rossby-szám az egyetlen dimenziótlan szám.

1.7 Gyorsan forgatott folyadék

1.7.1 Oszlopos áramlás, a Taylor–Proudman-tétel

Gyors forgatás esetén az (1.40)-(1.42) egyenletekben a Rossby-számot független tagok dominálnak. Lassú mozgásokat, azaz a dimenziótlan gyorsulások egyséngyű nagyságrendjét feltételezve a bal oldal kicsi. A $Ro \ll 1$ esetben ekkor a zárajében levő tagoknak el kell tűnniük:

$$\pm v - \frac{\partial p'}{\partial x} = 0 \quad (1.43)$$

A dinamikai nyomás tipikus értéke a földi légkörről néhány hektopascal (hPa), az óceánban néhány ezer hPa. 1 hPa = 100N/m² = 100kg/(m²s²) = 1 mbar. A felszíni légnyomás 1000 hPa körüli.
\[\mp u - \frac{\partial p'}{\partial y} = 0, \tag{1.44} \]
\[- \frac{\partial p'}{\partial z} = 0. \tag{1.45} \]

A (1.43), (1.44) egyenletek \(z \) szerinti deriváltjából a dinamikai nyomás (1.45) szerinti magassággfüggetlensége miatt azt kapjuk, hogy

\[
\begin{bmatrix}
\frac{\partial u}{\partial z} = \frac{\partial v}{\partial z} = 0.
\end{bmatrix} \tag{1.46}
\]

Ez az ún. Taylor–Prandt-tétel, amely azt mondja ki, hogy a vízszintes sebességkomponensek nem függnek a magasságtól, az egymás fölötti folyadékrétegek között nincs nyírás, e rétegek vízszintes irányban azonosan mozognak, az áramlás oszlopos szerkezetű. A teljes összenvonhatatlansági feltétellel, (1.22)-vel ez azt jelenti, hogy

\[
\frac{\partial^2 w}{\partial z^2} = 0, \tag{1.47}
\]

azaz a függőleges sebesség csak lineárisan függhet a \(z \) koordinátától.

Ha még azt is kihasználjuk, hogy a forgatású szögebbesség nem függ a helytől, akkor a (1.43) egyenlet \(y \) szerinti, a (1.44) \(x \) szerinti deriváltját véve, majd kivonva őket egymástól, azt kapjuk, hogy az áramlás divu síkbeli divergenciaja eltűnik:

\[
\text{div}u \equiv \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. \tag{1.48}
\]

A vízszintes síkbeli áramlás összenvonhatatlanságában, és a függőleges sebesség nem függhet a \(z \) koordinátától.

Ha valamelyik perem miatt \(w \equiv 0 \), azaz nincs függőleges mozgás, az áramlás kétdimenziós. Ez a Taylor–Prandt-tétel erősebb változata. Emellett hengsúlyozni, hogy a tétel sürödő folyadékokra is igaz, amennyiben a Reynolds-szám nem túlságosan kicsi. Az erős forgatás szinkronizáltan mozgó vízszintes rétegekben kénytelenként a folyadékat, hiszen a vízszintes síkban ható Coriolis-erő dominál. Az (1.45) egyenlet azt fejezi ki, hogy a nyomás magasságfüggése hidrosztatikus. Az egymás fölötti rétegek tehát áramlásdinamikai szempontból nem különböztethetők meg.

Már véges, de kicsi Rossby-számok esetén is világosan látszik az oszlopos áramlás kialakulásának tendenciája. Ha forgatott folyadékba injekciós tűvel felülold festéket fecskeendezünk, a kezdetben szabaduló festékeket kénytelenként a relatív sebesség miatt kialakuló áramlatok következtében elmozdul, s rövid idő után már függőleges síkba rendeződő görbült felület (Taylor-függőnyök) mentén helyezkedik el (1.5.a,b ábra).

Az oszlopos szerkezet egy másik bizonyítéka Taylor kísérlete (G.I. Taylor (1886-1975) angol fizikus, a modern hidrodinamika egyik megalapozója). Ha egy forgatott edény aljára korongot helyezünk és áramlást hozunk létre a korong körül, azt tapasztaljuk, hogy a korong feletti egész vízszölop együttható áll a koronggal (1.6, 1.7 ábra). Ez elképzelhetetlen dolog a hétköznapi életben: a korong mintegy magához csatlakozik az egész fölötte levő vízszölopot. A jelenség magyarázatát a tétel adja: ha ugyanis az áramlás nem függ a függőleges iránytól és az edény alján elkerül a korongot, akkor minden más magasságban is el kell kerülnie azt a hengert, amelynek alapja a korong. E kísérletekkel összhangban, megfigyeléseket mutatjuk, hogy a parttól távoli lassú tengeralaklatok helyenként több km mélységig azonosan mozognak, és a legközi mozgások nagy skálán gyakorlatilag kétdimenziós (1.7 ábra).
1.5 ábra: A Taylor–Proudman-tétel kísérleti bizonyítéka. a) Gyorsan forgatott edénybeli folyadéka festéket juttatunk. b) Függőleges festékfüggönk alakulnak ki.

1.6 ábra: A Taylor-kisérlet. a) Az elrendezés: forgatott edény alján kis korongot helyezünk (a pontozott vonal a korong felett elhelyezkedő folyadékoszloppot jelöli). b) Az együtt forgó rendszerben feltűről megfigyelt áramlás: a lassan jobbra mozgó festéksákok kivülől megkerülik a korong alapú hengert (jobbra fent). A henger belsejéből induló csepp, ha keveset is, de elmozdul, mely a \(Ro = 0 \) esetében való áthalad elétésre utal

1.7.2 A geostrofikus egyensúly

A gyorsan forgatott határesetben lehetőség nyilik egy sajátos időfüggetlen, stacionáris áramlás kialakulására. Amennyiben a nyomásszelep időtől független, a (1.43)-(1.45) egyenletekből következik, hogy a

\[
v = v_g \equiv \pm \frac{\partial f}{\partial x}, \quad u = u_g \equiv \pm \frac{\partial f}{\partial y}, \quad w = w_g \equiv 0
\]

sebességfelszabadító, stacionáris. Az ilyen áramlást geostrofikusnak, azaz a Föld forgása által meghatározottnak hívjuk. A tapasztalat szerint ez természetes közegünk nagyskálájú mozgásáira jellemző áramlási típus.

A fenti egyenlet azt mutatja, hogy a vízszintes nyomásszaftokon ellentmond az a Coriolis-erőt: \(\pm n \times \mathbf{u}_g = -\text{grad} f \). Tehát a nagyon gyorsan forgatott áramlásokban létezik olyan egyensúly, melyben a nyomásszaftokon szármand erő kompenzálja a Coriolis-erőt, amint az 1.8 ábra szemlélteti. Ez ohatatlanul azt jelenti, hogy a folyadék áramlik, hiszen különben eltűnne a Coriolis-erő.

A geostrofikus áramlás olyan vízszintes síkbeli áramlás, melynek \(\mathbf{u}_g \) sebessége merőleges a

vízszintes nyomásgradiensre:

\[
\mathbf{u}_g \cdot \text{grad} p' = 0. \tag{1.50}
\]

Az áramlás tehát nem arra folyik, amerre a nyomás hajtana, hanem arra merőleges. Ez teljesen ellentétes hétkőznapi tapasztalatunkkal, mert egy csőben póldul a nyomásgradiens írásába folyik a víz. A geotrofikus áramlás gyorsaságát a vízszintes nyomásgradiens egyértelműen meghatározza. A későbbiekben látni fogjuk, hogy a nyomást a folyadék felszínű alakja, ill. rétegzett folyadékban a sűrűséglevel szabja meg. A sebesség iránya a nyomási erőre mindig merőleges, pozitív (negatív) forgatási irány esetén \(\mathbf{u}_g \) ezen erő vektorától jobbra (balra) mutat. Az áramlás jobb (bal) oldalán található tehát a magasabb nyomás. Mivel az elmozdulás merőleges a nyomási erőre, a munka zérus, s ezért az áramlás a forgó rendszerben külön energiabefektetés nélküli is fönntarad (de felhasználhatja a forgatáshoz szükséges energiát).

Dimenziós alakban \(2\Omega \times \mathbf{u}_g = -\text{grad} p'/\rho_0 \), amiből \(\mathbf{u}_g = (\mathbf{n} \times \text{grad} p')/(2\Omega \rho_0) \), avagy

\[
\begin{align*}
v_y & = -\frac{1}{2\Omega \rho_0} \frac{\partial p'}{\partial y}, \quad v_g & = \frac{1}{2\Omega \rho_0} \frac{\partial p'}{\partial x},
\end{align*} \tag{1.51}
\]

tehát a nyomásgradiens és \(2\Omega \rho_0 \) viszonya szabja meg az áramlás erősségét.

Ezek szerint, ha két, \(\delta r = 100 \text{ km} \) távolságban futó izobárt tekintünk, melyek között a nyomáskülönbség \(\delta p = 2 \text{hPa} = 200 \text{ N/m}^2 \), akkor a levegő \(\rho_0 = 1,2 \text{ kg/m}^3 \) sűrűségével és \(\Omega \)-el számolva azt kapjuk, hogy \(\mathbf{u}_g = \delta p/(2\Omega \rho_0 \delta r) = 11 \text{m/s} \approx 40 \text{km/h} \). Ez a valódi ciklonbeli szélességesek nagyságrendje.

A meteorológiában mintegy 150 éve ismert a báríkus szélörvény (melyet C. Buys-Ballot (1817-1890) holland meteorológus írt le először), amely szerint az északi felteken a szél irányának
1.8 ábra: Erőviszonyok geosztrofikus egyensúlyban: a \(-2\alpha_0 \Omega \times \mathbf{u}_g\) Coriolis-erő a \(-\text{grad} p\) nyomási erővel ellentétesen egymáshoz. Rájuk merőleges a kialakuló két dimenziós geosztrofikus áramlás \(\mathbf{u}_g\) sebességvektora. A magasabb nyomás pozitív forgatás esetén a sebességvektor jobb oldalára esik.

vektorától a magasabb nyomás mindig jobbra esik, a déli felé pedig fordítva. Ez összhangban van a geosztrofikus szabályal, de annál többet is jelent: a geosztrofikus áramlástól való eltérés a valódi szelek esetében sohasem annyira erős, hogy az orientációs viszonyok felbordulhassanak. A geosztrofikus feltétel a légköri mozgásokra a magasabb légrétegekben nagyon jól teljesül. A meteorológiai térképek szélsősebességvektorai valóban az izobárokkal párhuzamosak (1.9 ábra).

1.9 ábra: Szintvonalak és szélirányok (zászlós vektorok) meteorológiai térképen. A folytonos vonalak azokat a pontokat kötik össze, amelyekben az 700 hPa nyomás azonos magasságra esik (átlagos értékként mintegy 3 km). Mivel a nyomás változás a vízszintes síkban viszonylag gyenge, ezek a szintvonalak hasonlóan futnak, mint az azonos magassághoz tartozó izobárok. A zászlókat alkotó minden egyes vonal 5,1 m/s-os sebességet jelöl. A magas (H) és alacsony (L) nyomású központok körül körbörös áramlások figyelhetők meg, anticiklonok, ill. ciklonok [European Meteorological Bulletin, 1998. január 9, 12 óra, Deutscher Wetterdienst].
A későbbiekben gyakran fogjuk használni, hogy bármilyen síkban összenyomhatatlan $u(x, y, t)$ sebességű áramlást tartozik egy $\psi(x, y, t)$ áramlású függvény, melyre

$$\begin{align*}
u = \frac{\partial \psi}{\partial y}, \quad v = \frac{\partial \psi}{\partial x},
\end{align*}
$$

hiszen ekkor $\text{div}\, \mathbf{u} = 0$. Az áramvonalak a ψ áramlású függvény szintvonalainak felelnek meg.

A fentiekből következik, hogy a geozströfikus áramlású függvény a nyomással arányos:

$$\psi = \frac{1}{2\Omega r_0} p'.
$$

Az áramvonalak tehát az állandó nyomású görbék, az izobárok.

Az örvényvektor a függőleges irányba mutat, megegyezik z irányú komponensével, melyet ζ-val jelölünk. Ez a komponens tehát $\zeta \equiv \omega_z = (\mathbf{v} \times \mathbf{v})_z = \partial v_y / \partial x - \partial v_x / \partial y$, és érvényes, hogy

$$\zeta = \frac{1}{2\Omega r_0} \Delta p'.
$$

A kialakuló örvényességet a dinamikai nyomás második deriváltja határozza meg.

Minden nyomáscsillapítást tartozik egy geozströfikus áramlás. Nézzük meg, hogy ez milyen típusú kör alakú izobárok esetén, ha a középpontban alacsonyabb a nyomás, mint kívül (1.10a ábra). Az izobárok mentén körkörös áramlást alakul ki. Az ilyen radiális nyomáscsillapítás cirkulációs áramlássra vezet, mely körülölelja az alacsony nyomású helyet, méghozzá (1.51) szerint $\Omega > 0$ esetén az öramulatú járásával ellentétes irányban. Végül ők mindhárom, az északi felteke ciklonjához hasonló áramlás.

![1.10 ábra: Forgásszimmetrikus $p(r)$ nyomáscsillapítás hatására kialakuló geozströfikus áramlás alacsony (a) és magas (b) nyomású központ körül. Az áramlás körkörös, nagysága $u_\varphi(r) = 1/(2\Omega r_0)dp(r)/dr$. Nyomásminimum körül az áramlás ciklonálás.](image)

Általában ciklonálisnak (antiklonálisnak) az alacsony (magas) nyomású központ körüli kialakuló körkörös áramlást nevezzük. Az áramlások forgási iránya függ a forgatási szöge sebesség előjelétől. Negatív Ω esetén, s ezért a déli félvölgyből a ciklonálás áramlás az öramulatú járásával megegyező, azaz negatív irányú. Ugyanilyen irányú viszont az Északi félvölgy antiklonális áramlása (1.10b ábra).

A későbbiekben (4.3.2 fejezet) látjuk fogjuk, hogy a ciklonális mozgáshoz hasonló feláramlást tartozik. Ez a felszín közelében a központ felé mutató sebességkomponens megjelenésével jár. A folyadékrészek tehát nem körpályán, hanem enyhén tekeredő spirális mozognak (1.11 ábra).

A műszakilványi ciklonokra jellemző spirálkarakat az alacsonyszintű felhőzet rajzolja ki, amint az az 1. ábrán is megfigyelhető. A jó idővel járó antiklononk ritka felhőzetében csak kivételes alkalmakkor figyelhető meg a spirális mintázat (1.12 ábra).
1.11 ábra: A valódi ciklonális áramlások jellegzetes részecsképályái. A gyenge viszkozitás következtében kialakuló lassú beáramlás miatt pozitív forgásirány (északi feléke) setén (a) jobbra, negatív esetén (déli feléke) (b) balra tekeredő spirálok mentén történik az áramlás.

1.12 ábra: Anticiklon űrfelvétele az északi feltekén. A spiráliszerkezet azonos a déli felteke ciklonjaival [www.lpi.usra.edu/images/scl0/scl0_827.gif].

1.8 A kvázigeosztrofikus közelítés

A geosztrofikus egyensúly elméleti létezése megmagyarázza, hogy miért hosszú életűek a ciklonok és anticiklonok a Földön. Az erősen forgatott határesetben nem is változhatnának időben. A valódi ciklonok lassan mozognak és deformálódnak, mert időskálájukat a geosztrofikus áramlástól való, Rossby-szám rendű csekély eltérés határozza meg.

Általában, a geosztrofikus áramlás szolgál kiindulásul minden lassú, nagysebességű környezeti áramlás problémában. Először megértjük a geosztrofikus határesetet, s utána hozzávesszük az időben lassan változó korrekciókat. A geosztrofikus áramlást tekinthetjük a nyomásgradiens egyértelmű kifejezésének (1. (1.51)), azaz a teljes hidrodinamikai egyenlet úgy írható, mint

\[
\frac{du}{dt} = +2\Omega (v - v_g) + \nu \Delta u \quad (1.55)
\]

\[
\frac{dv}{dt} = -2\Omega (u - u_g) + \nu \Delta v \quad (1.56)
\]

\[
\frac{dw}{dt} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial z} + \nu \Delta w. \quad (1.57)
\]

Amennyiben feltehető, hogy a geosztrofikus eredménytől való \(u - u_g, v - v_g, \partial p'/\partial z \) eltérés kicsi, ezt az egyenletrendszer nevezzük a forgatott folyadék hidrodinamikájára kvázigeosztrofikus közelítésnek. Megadja, hogy mik az első korrekciók a geosztrofikus határesethet képest és egyben
már megenged időfüggő dinamikát is. Ez nemlineáris egyenlet, s ezért egzakt kijelentések csak speciális esetekben tehetők a kvázigyögzstrofikus viselkedésről. Az (1.30) dimenziótlanítással a jobb oldal mindenütt 1/Ro-val szorzódik, míg a bal oldal egységnyi. Ezért a dimenziótlanított sebesség geosztragrikus közeletében a Rossby-számot megtartjuk, mint kis számot, de csak első rendben, s ez már meglepően jó leírását eredményez a környezeti áramlásoknak. A kvázigyögzstrofikus egyenlet vizsgálata lesz a későbbiekben egyik fő célunk.

1.9 Tehetetlenségi körmozgás

A Coriolis-erő jelenlétének egy érdekes következménye az ún. tehetetlenségi körmozgás. Tekintsünk egy meglökött pontszerű testet, melyre csak a Coriolis-erő hat, ugyanúgy, mint az (1.37), (1.38) hidrodinamikai egyenletben állandó nyomás és elhanyagolható viszkozitás esetén. Mivel a Coriolis-erő merőleges a sebességre, a test körpályán mozog (hasonlóan a konstans mágneses térben mozgó töltött részecskéhez). Az τ_0 sugarú körpályán tartózás szükséges $n_0 \omega^2$ gyorsulást egyedül a $2|\Omega|\tau_0 \omega$ Coriolis-gyorsulás biztosíthatja (l. 1.13 ábra). Ezért a mozgás ω körfrekvenciája éppen a forgatási szögsebesség kétzerese lesz:

$$\omega_0 = 2|\Omega|$$

függetlenül a körpálya középpontjától és a kerületi sebességtől. Az ilyen tehetetlenségi körmozgás periodusideje tehát a forgatási periodusidő fele. A mozgás iránya ellentétes a forgatási irányú: mindig anticiklonális körüljárású. Az 1 km sugarú körön tehetetlenségi mozgást végző test kerületi sebessége Földön 10 cm/s nagyságrendű.

1.13 ábra: Tehetetlenségi körmozgás a forgatott rendszer bármely pontja körül kialakulhat, ha a testre csak a Coriolis-erő hat. A körbefordulás ideje felé a forgatási periodusidőnél, iránya pozitív Ω esetén negatív, a pálya sugarától és a középpont helyétől függetlenül.

A tehetetlenségi mozgáshoz természetesen hozzáadódhat egy egyenletes elmozdulás. Térben és időben közel állandó hidrodinamikai nyomásgradient esetén az óceáni vízfolyáscs sebességében valóban megfigyelhető egy spirális előrehaladás. Ez a tehetetlenségi mozgás következménye, és perioduson belül nap körül (l. 1.14 ábra). A jelenség teljes kvantitatív megértéséhez a Föld felszínén ható Coriolis-erő helyfűggéseit is figyelembe kell majd vennünk (l. 3.3 fejezet).

A tehetetlenségi körmozgásban a nyomásgradientes elhanyagolható a Coriolis-erő mellett. Ezért az ilyen mozgás nem tekinthető sem geosztragrikusnak, sem ahhoz közelnek. A centrifugális erő ugyanis megegyezik a Coriolis-erővel, s a mozgás frekvenciája is összemérhető a forgatáséval. Az ilyen mozgás ezért egységnyi Rossby-számmal jellemzhető.

1.10 Tehetszetlenségi hullámok

1.10.1 Síkhullám megoldás

A forgatott folyadék kollektív viselkedésében a tehetszetlenségi mozgás megfelelője egy speciális hullámfajta, a tehetszetlenségi hullám. Mint minden lineáris hullámban azt vizsgáljuk, milyen áramlás alakul ki, ha a folyadékot kissé kimozdítjuk valamelyik egyszerű áramlású állapotából. Jelen esetben ez a \(\mathbf{v} = 0 \) nyugalmi állapot. Mivel ekkor az áramlás gyenge, az advektíven gyorsulásomok mássodrendűen kicsik, elhanyagolhatók, s az (1.20) teljes deriváltak jó közelítéssel helyettesíthetők az időbeli parciális deriváltakkal. A (1.37)- (1.39) Navier–Stokes-egyenletek ebben a közelítésben lineárisak:

\[
\frac{\partial u}{\partial t} = +2\Omega \nu - \frac{1}{\rho_0} \frac{\partial p'}{\partial x} + \nu \Delta u, \tag{1.59}
\]

\[
\frac{\partial v}{\partial t} = -2\Omega \nu - \frac{1}{\rho_0} \frac{\partial p'}{\partial y} + \nu \Delta v, \tag{1.60}
\]

\[
\frac{\partial w}{\partial t} = -\frac{1}{\rho_0} \frac{\partial p'}{\partial z} + \nu \Delta w. \tag{1.61}
\]

Mivel ez egy állandó együttthatás, homogén lineáris differenciálegyenlet-rendszer, a peremektől távoli viselkedés exponenciális függvényől írható le.

Síkhullámot akkor kapunk, ha minden hidrodinamikai változó térben is és időben is periodikus, azaz ha a

\[
\phi \equiv \omega_0 t - k_x x - k_y y - k_z z \tag{1.62}
\]

fázis periodikus függvénye. Itt \(\mathbf{k} = (k_x, k_y, k_z) \) a tetszőleges hullámszámvektora és \(\omega_0 (\mathbf{k}) \) a hullám frekvenciája. Az exponenciális megoldás csak akkor periodikus, ha a fenti kombináció szinuszt vagy koszinuszát tartalmazza, vagyis, ha \(\exp (i \phi) \)-vel arányos. A komplex írásmódot használva, a megoldást a

\[
(\mathbf{v}, p'/\rho_0) = (u_0, v_0, w_0, P_0) e^{(i \omega_0 t - i k_x x - i k_y y - i k_z z)} \tag{1.63}
\]

alakban keressük, ahol az amplitudók mind konstansok. Ezt a hidrodinamikai egyenletekhez helyettesítve azt találjuk, hogy minden tag arányos az \(\exp (i \phi) \) faktorral, mellyel egyszerűsíthetők.
Így egy homogén lineáris algebrai egyenletrendszerhez jutunk. Ennek nemtriviális megoldása adja a frekvencia hullámzámfüggését, az $\omega_0(\mathbf{k})$ diszperziós relációt\(^\text{10}\).

A megoldást az egyszerűség kedvéért az y irányban eltolásinvariánsnak tételezzük fel ($k_y = 0$). Az (1.59)- (1.61) és (1.22) egyenletekből, egyelőre a visszkozig általános, a keresett homogén lineáris egyenletrendszer, az ún polarizációs egyenletek:

$$i\omega_0 u_0 = 2\Omega u_0 + ik_z P_0,$$

(1.64)

$$i\omega_0 v_0 = -2\Omega u_0,$$

(1.65)

$$i\omega_0 w_0 = +ik_z P_0,$$

(1.66)

$$k_x u_0 + k_z w_0 = 0.$$

(1.67)

Nemtriviális megoldás csak akkor létezik, ha az egyenletrendszer determinánsa eltűnik. Ennek feltétele megkapható az együtthatók kiküszöbölésével is. Az (1.67)-(1.66) egyenletekből: $P_0 = -\omega_0 u_0 k_x / k_z^2$. Ezt (1.64)-be helyettesítve

$$i\nu_0 \frac{k^2}{k_z^2} \omega_0 = 2\Omega u_0,$$

(1.68)

ahol $k = \sqrt{k_x^2 + k_z^2}$ a hullámzámvektor hossza. Az (1.65) egyenlet átrendezve viszont

$$v_0 \omega_0 = i2\Omega u_0.$$

(1.69)

E két utóbbi egyenlet egyszerre csak úgy teljesülhet nemzérus együtthatókkal, ha

$$\omega_0 = \pm 2\Omega \frac{k_z}{k} = \pm 2\Omega \sin \theta.$$

(1.70)

Ez a tehetsélesség hullámok diszperziós relációja, ahol θ a \mathbf{k} hullámzámvektornak a vízszintes egyenessel bezárt szög.\(^\text{11}\). A diszperziós reláció a \mathbf{k} vektornak csak az irányától függ. A θ szög $k_z < 0$ esetén maga is negatív. A \pm előjel azt fejezi ki, hogy minden hullámvektornhoz tartozik egy vele azonos és ellentétes irányban haladó hullám is. A $\sin \theta$ tényező mutatja, hogy a hullám frekvenciája felülből korlátos: nem lehet nagyobb a 2Ω értéknél (1.15a ábra). Ilyen hullámok tehát csak forgatott rendszerben fordulhatnak elő.

A polarizációs egyenletekből a sebességeloszlás alakjára is következtethetünk. A (1.67) szerint az eloszlás olyan, hogy csak a \mathbf{k} hullámzámvektorra merőlegessé válnak a hullám transzverzális. A diszperziós relációt felhasználva, mind (1.68), mind (1.69) azt jelenti, hogy

$$v_0 = \frac{2\Omega}{\omega_0}.$$

(1.71)

A két vízszintes sebességkomponens komplex amplitudója tehát ellentétes fázisú. A valós részeket véve a hely-, és időfüggés

$$u = -w \frac{k_z}{k_x} = -v_0 \frac{\omega_0}{2\Omega} \cos (\omega_0 t - k_x x - k_z z), \quad v = v_0 \sin (\omega_0 t - k_x x - k_z z).$$

(1.72)

\(^\text{10}\)Ha ω_0 képzetesnek adódnak, hullámegoldás nem létezik. Amennyiben a megoldás időben növekvő, akkor kis zavarok exponenciálisan felerősödnek, az eredeti áramlású állapotot instabil.

\(^\text{11}\)Az összefüggés y irányban is terjedő hullámokra is érvényes, ha θ a hullámzámvektornak a vízszintes síkkal bezárt szögét jelöli.
1.15 ábra: A tehetetlenségi hullámok ω₀(k_z) diszperziós relációja (k_x rögzített). |2Ω|-nél nagyobb frekvenciájú hullámok nem létezhetnek.

alakú. A fenti egyenletek azt fejezik ki, hogy a teljes sebességvektor abszolútértéke a v₀ állandó. A terjedési irányra méretezett síkban a sebességvektor 2π/ω₀ periódussal forg: a hullám cirkulárisan polarizált.

Ezek alapján a diszperziós reláció szemléletes jelentést nyer. Mivel a sebesség a k-ra merőleges síkba esik, a Coriolis-hatást az Ω vektor k-ra eső vetítése, azaz Ω sinθ határozza meg. Az ennek megfelelő tehetetlenségi körmozgás frekvenciája (1.70). A vízszintes terjedés (θ = 0) határesetében a hullámzás megszűnik, ω₀ → 0. Ez összhangban van a Taylor-Proudman-tétellel (ilyenkor a Ro ≡ |ω₀/(2Ω)| = |sinθ| Rossby-szám kicsi), hiszen k_z → 0-ra az áramlás független válík z-től és stacionárius állapot alakul ki.

Mivel a folyadékonynak tehetetlenségi mozgást végeznek, a sebességvektor időbeli elfordulása adott helyen antiklonális, ω₀ előjeletlőt figyeltenül. A fenti összefüggések alapján az is látszik, hogy a sebességvektorok egy adott pillanatban térben is antiklonálisnak fordulnak el, ha a hullám terjedési irányával ellentétesen mozgunk a z tengely mentén (1.16 ábra). A pillanatnyi sebességek térbeli elfordulása a magassággal megfigyelhető mind a légkörri mind az óceán mozgások tehetetlenségi hullámokból eredő komponenseiben, a néhány km-es skálán. Pontos értelmezésükben majd a rétegzettség is jelentős szerepet játszik (6.4 fejezet).

1.16 ábra: A sebességvektorok térbeli elrendeződése tehetetlenségi hullámban. Egy adott helyen a sebességvektor végpontja körpályán (szaggatott vonal) mozog.

Megjegyezzük, hogy a viszkózus tag megtartása az ω₀ → ω₀ − iν k² helyettesítésnek felel meg az (1.64)-(1.67) egyenletrendszerben. A belső súrlódást is figyelembe véve tehát a diszperziós reláció

\[ω₀ = ±2Ω \sin θ + iv k². \]

Az imaginárius rész időben exponentiális csillapodást ír le az exp(−ν k² t) szabály szerint. A csillapodás ilyen formájú megjelenése más hullámokra is jellemző: a csillapodás erőssége a kis számértékű kinematikai viszkozitással arányos. Ebből a példából levonhatjuk azt az általános
következetetést, hogy a hosszú hullámok (kis \(k\)) csillapodása a leglassább. Bár a rendszerben kialakuló hullámokkent van is szó, feltételezve lendően hosszú idő (típikusan a \(t_{\text{relax}} = L^2/\nu\) relaxációs idő), ahol \(L\) a lineáris méret) eltelté után már csak a legnagyobb (\(L\)-el összehúzott) hullámhosszú hullámok figyelhetők meg, mert a többiek kihaltak.

1.10.2 Fázis-, és csoportsebesség

A tehetsélenyű hullámok jól példázzák azt az állítást, hogy a környezeti áramlások hullámai diszperziók, terjedési sebességük függ a hullámszámtól. Az ilyen hullámok ezért alapvetően különbözők hangszere, nem diszperzió társaiktól. A hullámsomagok, melyek szinuszhullámok lineárkombinációi, nem tartják meg alakjukat, hiszen minden összetevőjük más sebességgel mozog.

![Diszperzió grafikon](image)

1.17 ábra: A diszperzió következménye: a különböző hullámhosszú komponensek különböző sebességgel terjednek, s ezért minden lokalizált kezdeti alak szétfolyik. Az ábrán három, egymást követő időpontbeli hullám alak sematikus képe látható. Ez a tulajdonság bármilyen diszperzió hullámra jellemző.

Egy szinuszhullám terjedési sebessége (fázis sebessége) a frekvencia és az adott iránynak megfelelő hullámszámkomponens hányadosa. A tehetsélenyű hullámok \(x\) és \(z\) irányú terjedési sebessége tehát elhangzolható viszkozitás esetén

\[
c_x = \frac{\omega_0}{k_x} = \pm 2\Omega \frac{k_x}{k_x}, \quad c_z = \frac{\omega_0}{k_z} = \pm 2\Omega \frac{1}{k_z},
\]

(1.74)
mely erősen függ a hullámszámkomponensektől.

Adott közeg több, közel azonos hullámszámu és frekvenciájú szinuszhullámából álló csomagban a különböző hullámok modulálják egymást. Az interferenciák eredményeként kialakuló modulált hullám a fázis sebességtől eltérő sebességgel halad. A hullámsomag, s annak energiája is a modulált hullám sebességevel terjed (egyetlen szinuszhullám energiája térben állandó). Két azonos irányban haladó síkhullám, melyek frekvenciája és hullámszáma a \(\omega_0\), ill., \(dk\) mértékben kissé eltér, olyan modulált hullámot alkot, mely a \(d\omega_0/dk\) sebességgel halad. Ez a sebesség az ún. csoportsebesség. Általában a \(c^*\) csoportsebesség-vektor a frekvencia hullámszám szerinti gradiense.

\[
c^* = \left(\frac{\partial \omega_0(k)}{\partial k_x}, \frac{\partial \omega_0(k)}{\partial k_y}, \frac{\partial \omega_0(k)}{\partial k_z}\right)
\]

(1.75)

A csoportsebesség vektora a hullámszámvektorral tetszőleges szögöt is bezárhat.

Az \((x,z)\) síkban terjedő tehetsélenyű hullámokban

\[
c_x^* = \frac{\partial \omega_0}{\partial k_x} = \mp 2\Omega \frac{k_x k_z}{k^3}, \quad c_z^* = \frac{\partial \omega_0}{\partial k_z} = \pm 2\Omega \frac{k^2}{k^3}
\]

(1.76)

A csoportsebesség nagysága tehát \(2|\Omega \cos \theta|/k\). Mivel a függőleges terjedés \(k_x = 0\) az egzakt tehetsélenyű körmozgással jár, mely magától is fennmarad, az ilyen irányú hullámmal energia nem halad, a csoportsebesség eltűnik.
Innét látszik, hogy a csoportsebesség vektora merőleges a fázissebességre,

\[c^4 \cdot \mathbf{k} = 0, \]

(1.77)

azaz az energia mindig \(\mathbf{k} \)-ra merőlegesen terjed. Ha a hullámok hangszerű társaiktól való eltérését a hullámszám és csoportsebesség által bezárt szög nagyságával jellemzzük, akkor a tehetablen-

ségi hullámok a lehető legdiszperzísebb hullámok közé tartoznak. Az, hogy a csoportsebesség ve-

tortóra vagy balra mutat, a frekvencia előjelétől és a hullámszámvektor irányától (a fázissebesség irányától) függ. A pozitív frekvenciájú hullám csoportsebessége pl. pozitív forgatá-

si szögsebesség esetén a \(\mathbf{k} \) vektortól balra mutat, ha a hullámszámvektor az első szögnegyedbe esik (1.18 ábra).

\[\begin{array}{c}
\Omega \\
\begin{array}{c}
c^* \\
\mathbf{k}
\end{array}
\end{array} \]

\[\begin{array}{c}
\theta \\
\begin{array}{c}
c^* \\
\mathbf{k}
\end{array}
\end{array} \]

1.18 ábra: Tehetetlenségi hullámok \(c^4 \) csoportsebességségének és \(\mathbf{k} \) hullámszámvektorának visz-

nya pozitív forgatási szögsebesség mellett. A szaggatott vonal a negatív frekvenciához (fázis-

sebességhoz) tartozó csoportsebességet mutatja.

Ha tehetablen-

ségi hullámokat valamilyen kis méretű test kis amplitudójú, \(\omega (0 < \omega < 2|\Omega|) \) frekvenciájú mozgatásával gerjesztünk, akkor azok \(\theta = \pm \arcsin \left(\frac{\omega}{2|\Omega|} \right) \) szög alatt haladnak az \(x \) tengelyhez képest. A csoportsebességvektorok ugyanakkora szögeket zárnak be a függőlegessel, s az energiaterjedés jellegzetes X alakzatot rajzol ki (1.19, 1.20 ábra). A közeg izotróp jellege ellenére a tehetablen-

ségi hullám terjedése anizotróp. Ez a tulajdonság is mutatja, hogy a tehetablen-

ségi hullámok mennyire eltérnek a hangszerűektől, hiszen az utóbbiuk ugyanilyen keltés mellett a függőlegesrik minden irányába haladhatnának. A gerjesztő szögsebesség növelésekor a terjedési irány egyre meredekkebb, a megfigyelhető X alakzat egyre laposabb, s \(\omega_0 = 2|\Omega| \)-ra eltűnik.

A tehetablen-

ségi hullámok viszonylag gyorsak, frekvenciájuk \(\Omega \)-val arányos. Ez azt mutatja, hogy tehetablen-

ségi hullámokkal véges \(k_z \) mellett még a gyors forgatás határesetében sem jutha-

tunk közel a geosztrofikus állapothoz. Az (1.23) egyenletnek tehát létezhetnek olyan megoldásai, melyekben kis Rossbyszámok esetén a dimenziólatlan hidrodinamikai gyorsulás \(1/Re \) rendű. Ezek nem felelnek meg a kvázigosztrofikus leírásnak, melyben a leglassabb időbeli változások követése a cél. Látni fognak, hogy a kvázigosztrofikus közelítésben a tehetablen-

ségi hullámok és hasonlóan gyors társaik kiátlagolódnak.
1.19 ábra: Pontszerű, $|\omega| < 2|\Omega|$ frekvenciájú forrásból induló tehetsélességi hullámok és csoportsebességeik lehetséges irányai.

1.20 ábra: Kisméretű korong ω frekvenciájú mozgatásával gerjesztett tehetsélességi hullámok $|\Omega| > \omega$ szögebességgel forgatott tartályban. Jól megfigyelhető a törésmutató változása egy X alakú tartományban, mely az energia terjedési irányoknak, azaz a csoportsebesség vektor lehetséges elhelyezkedéseinek felel meg. Nagyobb gerjesztési frekvencia esetén az X alak laposabb [Tritton].

27
2. fejezet

A sekélység hatása

Úrhajóból nézve a légkör keskény bárányának tűnik a Föld felszínén (2.1 ábra). Az óceán átlagos $H = 4$ km-es mélysége vagy a légkör legaktívabb alsó részének, a troposzférának $H = 10$ km-es átlagos vastagsága sokkal kisebb, mint a bennük kialakuló áramlások vízszintes síkbeli L széles-sége, mely több ezer km is lehet. A H/L méretarány kicsinsége (2.2. ábra) azt eredményezi, hogy függőleges irányban csak nagyon lassú mozgások jöhetnek létre. Az áramlás közel kétdimenziós és oszlopos szerkezeti (2.3 ábra). Ennek következtében a nyomás magasságtól való függése a hidrostakatiak törvényei szerint alakul tétszőfeszes forغatási sebesség mellett. Ezért a nyomás helyzete a folyadéklétszín alakjaival, s a domborzat alakja is egyszerűen vehető figyelembe.

A szabad felszínre mozgásokkal járó forgatott surlódásmentes folyadékban a Rossby-számok kívül megjelenik az

$$\text{Fr} = \frac{U}{\sqrt{gH}}$$

Froude-szám is mint fontos dimenziótlan paraméter (itt g a gravitációs gyorsulás). Két áramlás akkor hasonló, ha geometriaileg hasonló domborzat és perem mellett Ro és Fr számai azonosak. A Froude-szám értéke nagyjával környező áramlásokban 0,1 vagy annál kisebb, s ez az érték laboratóriumban is könnyen megvalósítható.

A surlódásmentes sekély folyadék dinamikája egy alapesetű fontosságú megmaradási tételel párosul. A

$$q = \frac{\zeta + 2\Omega}{h}H$$

potenciális örvényesség bármely folyadékészcske mozgása során időben állandó. Itt Ω a forgatási szögsebesség, ζ az áramlás helyi örvényességének függőleges komponenese, h pedig a feljes folyadékmélység ugyanazon a helyen. A potenciális örvényesség megmaradása azt fejezi ki, hogy a mélyebb folyadékrétegben az elkeskenyedő oszlopok forgása gyorsabb lesz az impulzusnyomatai megmaradása következtében (2.4 ábra). A megmaradási tétel jelentősége abban adódik, hogy megszorítást jelent a lehetséges mozgásokra, s számos kvalitatív következtetés levonására nyújt lehetőséget.

Gyors forgatás esetén a ζ örvényesség elhanyagolható: a geoszfiskás áramlásnak sekély folyadékban állandó h mélységi szintek mentén kell történnie. Ez egyben azt is jelenti, hogy az áramlás a felszín alak szintvonalaikt követi, vagyis a felület lejtési irányána merőleges (2.5 ábra). A szabad felszínű antikiklonális áramlásnak kiduradódás, a ciklonálisnak pedig behorpadás felel meg (2.6 ábra). A 100 kilométerenkénti néhány méteres vízszintülső részhez óránként néhány kilométeres geoszfiskás sebesség tartozik. Valóban ilyen mértéki felszíni lejtés és ekkora sebesség jellemzi a Golf-áramlatot. Az áramlat, az arról leszakadt gúrűk (2. ábra) és a nagy óceáni medencék felszíni köráramlásai (2.7 ábra) is közel geoszfiskus egységülből lévő áramlások.
Rossznyomás. Ez a Rossnyomás a Rossnyomás lemezcsoportja és az a lemezcsoport, amely a Rossnyomás lemezcsoportja lemezstátusairól ad összefoglalót. A Rossnyomás lemezcsoportja és a Rossnyomás lemezcsoportja közötti kapcsolat az összes jellemzőt és a felhasználó által elérhető információk között hozzájárul, hogy a felhasználó a lemezcsoportja ráhajtható lemezstátusairól tudjon. A Rossnyomás lemezcsoportja és a Rossnyomás lemezcsoportja közötti kapcsolat az összes jellemzőt és a felhasználó által elérhető információk között hozzájárul, hogy a felhasználó a lemezcsoportja ráhajtható lemezstátusairól tudjon. A Rossnyomás lemezcsoportja és a Rossnyomás lemezcsoportja közötti kapcsolat az összes jellemzőt és a felhasználó által elérhető információk között hozzájárul, hogy a felhasználó a lemezcsoportja ráhajtható lemezstátusairól tudjon.
kis amplitudójú hallásmor követ (9.4 ábra). Kezdeti felületi behorgadásból szoktakon nem fejlődhet
ki, csak egy kis amplitudójú hallásmor (9.5 ábra). A földrengéshullámok, tsunamiik, a part menti
egye sekélyedő közegben lokalizált szolitónként viselkednek, miközben amplitudójuk nő, s a part-
vonal előtt több 10 m-es magasságot is elérhet. A szárazföldre jutva a szokásos tengerhallásmokhoz
hasonlóan (9.2 ábra) megtőrnek, pusztító energiákat szabadítanak fel.
A sekély közeg felszínén megfigyelhető másik nemlineáris jelenség a mozgó folyadékképesővel
járó tortóhullám (bore) (2.25, 2.26a ábra). A nem mozgó helyzetű folyadékképeső a hidraulikus
ugrás, mely gyors áramlások hirtelen lelassulásával társul (2.26b ábra).

2.1 A forgatott sekély folyadék egyenletei

A földi legköör és víztakaró keskeny hártya bolygóink felszínén (2.1 ábra).

2.1 ábra: Az ürepgőlőgépről jól látszik, hogy a felkelő Nap által megvilágított légkör mi-
lyen keskeny a Föld sugarához képest. A szűke róav, az íveszkéf, kb. 500 km-ig terjed. A
légkör aló 50 km-e a képen fehérnek látszik. Ennek legalsó része, a teljes levegőtőmeg mint-
egy 80 százalékát tartalmazó troposekéfa átlagosan 10 km vastag [sced.gsfc.nasa.gov/SCB/High-
lights/FY2000/gfx/atmos_comp. capright_.jpg].

Vizsgáljuk meg ezért, milyen következményekkel jár, ha az áramlás L jellegzetes vízszintes
kiterjedése sokkal nagyobb, mint a folyadék H átlagos mélysége, azaz ha az $\varepsilon \equiv H/L$ méretarány
1-nél lényegesen kisebb $H \ll L$.

![Diagram]

Ω

$\eta(x,y,t)$

g

$d(x,y)$

H

2.2 ábra: A forgatott, sekély homogén folyadék, és a fejezetben használt jelölések: a felület
nyugalmi szinthez viszonyított alakkja az $\eta(x,y,t)$ függvény, az aljzatot a $d(x,y)$ írja le. A fo-
yadék átlagos H mélysége sokkal kisebb az L vízszintes kiterjedésnél. A teljes $h = H + \eta - d$
folyadékmélység új dinamikai változó.

A sekélyfolyadék középtárs tárgyalni tudjuk azt is, ha az edény alja nem teljesen vízszintes,
mely a valódi áramlások alatti domborzat egyenetlenségének felel meg. Figyelembe vesszük a fo-
lyadék szabad felszínének egyenletlenségeit is. A felszín nyugalmi folyadékszintöz mért magassági koordinátáját a t pillánthat az \(\eta(x, y, t)\) függvény adja meg. A \(H\) átlagos mélységű síntől mérjük a domborzat \(d(x, y)\) alakját, melyről feltesszük, hogy időben nem változik (2.2 ábra). A folyadék adott helyhez tartozó pillanatnyi

\[
h(x, y, t) \equiv H + \eta(x, y, t) - d(x, y)
\]

mélysége fontos szerepet játszik a továbbiakban. Egyelőre semmilyen megszorítást nem teszünk a felszín és a domborzat alakjára, csak azt tételezzük fel, hogy a folyadék ellepi a domborza-tot: \(h > 0\). Az egyszerűség kedvéért a folyadék \visszakozását elhanyagoljuk, ideális folyadék közelítésben dolgozunk. A \visszakozással kapcsolatos jelenségekre majd az 4. fejezetben térünk vissza.

Az első fontos lépés a \(W\) jellegzetes függőleges áramlás sebesség becslése a kontinuitási egyenlet alapján. A vízszintes sebességkomponenseknek a vízszintes koordináták szerinti deriváltjai \(U/L\) rendűek. A függőleges sebességnek a \(z\) koordinátá szerinti deriváltjával, mely \(W/H\) rendű, együttessen \(0\)-t kell adnunk. Ebből azt kapjuk, hogy

\[
W \approx U \frac{H}{L} \equiv U \varepsilon \ll U,
\]

tehát függőleges irányban csak nagyon lassú mozgások történhetnek. A sekély folyadék mozgása mindig közeli kétdimenziós, függetlenül attól, hogy forgatott-e vagy sem.

Az (1.23) hidrodinamikai egyenlet függőleges sebességre vonatkozó komponensében a \(w\) idő-deriválta ezért közeli közöntő \(W/(L/U) = U^2/H^2L^2\), ami \(\varepsilon\)-szor kisebb, mint a vízszintes gyorsulás \(U^2/L\) becslése. A függőleges irányú mozgásból adódó hidrodinamikai gyorsulás tehát elhanyagolható. Sekély folyadékban ezért az (1.23) egyenlet függőleges komponensében ezért a jobb oldalon levő nyomási erőnek és a súlynak komponzálása kell egymást, tehát

\[
\frac{\partial p}{\partial z} = -\rho_0 \vartheta.
\]

A sekély folyadék a nyomás magasságfüggése szempontjából hidrosztatikai egyensúlyban van mozgása közben is.

Ebből

\[
p(x, y, z, t) = \rho_0 \vartheta (\eta(x, y, t) + H - z) + p_0.
\]

A külső felszínen feltesszük, hogy a \(p_0\) nyomás állandó (a \(p_0\) engedélyezésből adódó hatások a tapasztalat szerint környezeti áramlásokban nem jelentősek\(^1\)). Szabad felszín esetén az álló folyadék hidrosztatikai nyomásától való eltérést, a

\[
p' = \rho_0 \vartheta \eta
\]

járulékok tekintjük dinamikai nyomásnak. Nyomáskülönbség tehát a felszíni egyenletlenség miatt alakulhat ki, a folyadékmozgás felszíni alakváltozásával jár.

Az \(u\) és \(v\) vízszintes sebességkomponensekre vonatkozó hidrodinamikai egyenletben a nyomási tagok \(z\)-től függetlenek. Ez azt jelenti, hogy ha kezdetben nem volt \(z\)-függő a sebességekben,

\(^1\)A vizek felszínén a légköri nyomásengedés hPa nagyságrendű, de számottevő áramlás beindításához 1000 hPa nagyságú nyomásváltozásra lenne szükség.
akkor később sem lesz. A továbbiakban feltesszük, hogy a kezdeti u és v sebességek nem függnek a magasságtól2. Ekkor

\[
\frac{\partial u}{\partial z} = \frac{\partial v}{\partial z} = 0,
\]

azaz az áramlás oszlopos szerkezetű.

A sekély folyadék feltétel tehát két olyan tulajdonságot is biztosít minden forgatási sebesség-re, melyet mély folyadékban csak az erősen forgatott határeszleten tapasztalhatunk: a függőleges iránybeli hidrostaticként és az oszlopos szerkezetet. Az áramlás egzakt síkbeliségére ($w = 0$, div$u = 0$) azonban a folyadék sebességségből nem következik.

A két vízszintes sebességgkomponens időfjelölését ekkor (1.23) alapján a

\[
\frac{du}{dt} = -2\Omega \times u - \text{grad} \eta
\]

egyenlet írja le, ahol a d/dt teljes időderivált most a $\partial / \partial t + u \partial / \partial x + v \partial / \partial y$ síkbeli teljes időderiváltat jelenti, és u, v független z-től. A mély folyadék esetéhez képest másként fontos eltérés, hogy a nyomásderiváltak helyett most a felszín alakját lerítő függvény deriváltjai jelennek meg. Mivel azonban a felszín formája ismeretlen, szükségünk van még egy η-ra vonatkozó egyenletekre. Ez az anyagnemzedésből következik.

A teljes háromdimenziós áramlás összenyomhatatlannak, de mivel fel-, és leáramlások indulhatnak meg, a vízszintes síkbeli u sebesség divergenciája általában nem nulla. Az (1.22) divergenciamentességi feltétel következtében

\[
\frac{\partial w}{\partial z} = - \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \equiv \text{div}u.
\]

Természetesen, ha egy henger alakú tartomány vízszintes irányban radiálisan kifelé áramlik, akkor a henger szélésebb lesz és ezért függőleges irányban összehúzódik. Fordítva, ha beáramlás történik, akkor a henger megnyúlik (2.3 ábra). Mivel a divergencia z-től független, a w sebesség legfeljebb csak lineárisan függhet a magasságtól.

2.3 ábra: A sekély folyadék áramlása oszlopokban történik: mélyebb folyadékban az anyagmegmaradás miatt az oszlopok keskenyebbek lesznek.

2Mert például a mozgás nyugalmi állapotból indul.
a divergencia, annál gyorsabban változik időben a vízioszlop A területe: $\text{div} u = (1/A) dA/dt$. A divergencia az alapterület relatív növekedési arányát jelenti.

Állandó sűrűség esetén az anyagmegmaradás a folyadékember térfoğatának állandóságával egyenértékő, vagyis a $d(hA)/dt = 0$, amiből $Adh/dt = -hdA/dt$. Így

$$\frac{dh}{dt} = -h \text{div} u.$$ \hspace{1cm} (2.9)

Az áramlás sűkbeli divergenciája tehát egyben a magasság relatív megnyúlás arányának ellen-
tettje. A folyadékmélység pozitív sűkbeli divergencia esetén csökken. Sekély folyadékkban a folya-
dékoszlopok $(1/h)dh/dt$ relatív megnyúlás aránya $-\text{div} u$, vagyis a (2.8) egyenlettel összefüggő $\partial w/\partial z$ derívtája.

A teljes időderiváltat kitörva és a $\text{div}(hu) = (\text{grad}h) + h \text{div} u$ azonosságot felhasználva, (2.9)-ből a

$$\frac{\partial h}{\partial t} + \text{div}(hu) = 0$$ \hspace{1cm} (2.10)

ekvivalens alakhoz jutunk. Ez nem más, mint a (2.11) kontinuitási egyenlet összenyomhatatlan sekély folyadékkban, hiszen $h(x,y)$ arányos a teljes folyadékétég (x,y) pontja körüli egységnyi felülethez tartozó tömegek, azaz a kétdimenziós sűrűséggel.

A sekélyfolyadék hidrodinamika teljes egyenletrendszerre tehát:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{1}{\rho} \left[f + g \frac{\partial h}{\partial x} \right]$$ \hspace{1cm} (2.11)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = \frac{1}{\rho} \left[f + g \frac{\partial h}{\partial y} \right]$$ \hspace{1cm} (2.12)

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} = 0.$$ \hspace{1cm} (2.13)

Fontos megjegyezni, hogy η és h nem függetlenek, mert közöttük egy adott függvény, a dombor-
zat d alakja teremt (2.1) szerint kapcsolatot. Ez az egyenletrendszere egyenértékő az (2.12)-(2.13) rendszerrel az $\varepsilon \ll 1$ határesetben\(^{3}\). Mivel nagyskálájú áramlásokban ε tipikusan 10^{-2} vagy kisebb, az ε méretarányban elsőrendű korrekciókkal általában már nem érdemes foglalkoznunk (kivételképpen 1. 9.3 fejezet).

A későbbiekben többször használjuk majd az ún. merev lap közelítést, mely azt jelenti, hogy a felszínű alakváltozás elhanyagolható a teljes folyadékmélységhez képest: $\eta \equiv 0$, azaz $h = H - d$. Ez a zárt felszínű alak a laboratóriumban a folyadék vízszintes lappal való letakarásával bizto-
sítható. Az eltűnő felszíniedezés azonban nem jelenti azt, hogy dinamikai nyomásgradiens nincs jelen, hiszen a lap jelentős erővel hatat a folyadékra. Ekkor a p' dinamikai nyomás önálló változó, a (2.5) egyenlet nem érvényes és $-\text{grad} f$ helyett (2.7)-ben $-\text{grad} p'/\rho_0$ irandó\(^{4}\).

2.2 A dimenziótlan egyenlet

Az egyenletek dimenziótlanításához (1.30)-on kívül az

$$\eta \rightarrow H \eta$$ \hspace{1cm} (2.14)

\(^{3}\) Elhanyagolható viszkozitás esetén.

\(^{4}\) A jelölőszavakat elkerülendő szokás a $p' \equiv \rho_0 \eta$ kifejezéssel definiált η függvényt használni (melynek azonban ekkor semmilyen készítsen a felszínű alakhoz).
megfeleltetést használhatjuk, s hasonlóan járunk el a h és d mennyiségekkel is. Így

$$
\frac{du}{dt} = \frac{1}{Ro} n \times u - \frac{1}{Fr^2} \text{grad} \eta,
$$

(2.15)

$$
h = 1 + \eta - d,
$$

(2.16)

és (2.13) alakja változatlan. Itt megjelent a sekély folyadék elméletben érvényes

$$
Fr = \frac{U}{\sqrt{gH}}
$$

(2.17)

Froude-szám. A továbbiakban kizárólag ebben az értelemben beszélünk a Froude-számkról, tehát az L-et tartalmazó (1.27) alakot többé nem használjuk. A (2.17) Froude-szám az áramlás jellegzetes vízszintes sebességének és a sekély folyadékbeli gravitációs hullámok $c_0 = \sqrt{gH}$ terjedési sebességének (1. 28 fejezet) viszonya:

$$
Fr = \frac{\text{áramlás sebesség}}{\text{gravitációs hullámok sebessége}} = \frac{U}{c_0}.
$$

(2.18)

A szám nézgése a $\rho_0 U^2$ nyomás és a $\rho_0 g H$ fenékenymás hányadosát adja meg. A környezeti áramlások Froude-számát mindkét értelmezésben kicsinek várjuk. A 1.1 táblázatában az új Froude-számra a ciklon esetén ($H = 10 \text{ km}$) 10-szer, a Golf-gyűrűk estén ($H = 4 \text{ km}$) 5-ször nagyobb értékhez kapunk. Végylük észre, hogy így a ciklonra vonatkozó Rossby-számot Fr alulról meghúzolni.

A sekélyfolyadék hidrodinamikában tehát a szabad felszínnel kapcsolatos mozgásokban ohatatlanul fellép a Froude-szám is. Két forgatott sekély folyadék ideális áramlása akkor hasonló, ha geometriai értelemben hasonló domborzattal és peremekkel rendelkezik, és mind Rossby-, mind Froude-számuk azonos. Laboratóriumi, 10 cm mélységű folyadékban $1-10\text{cm/s}$ erősségű áramlásokhoz $0.01 - 0.1$ nagyságú Froude-szám tartozik. A természetben előforduló értékek tehát könnyen megvalósíthatóak.

2.3 A potenciális örvényesség megmaradása

A sekély folyadék egyenlőrendszernek érdekess tulajdonsága, hogy egy új megmaradási téttelt hordoz, mely az örvényességgel kapcsolatos. Képezzük a (2.11) egyenlet y szerinti, majd a (2.12) egyenlet x szerinti deriváltját, s vonjuk ki ezekeit egymásból. Így az örvényvektor $\zeta = \partial v/\partial x - \partial u/\partial y$ függőleges komponensének időderiválja:

$$
\frac{d\zeta}{dt} = -(\zeta + 2\Omega) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = (\zeta + 2\Omega) \frac{\partial v}{\partial x}.
$$

(2.19)

Ez, Ω állandósága miatt a $\zeta_T \equiv \zeta + 2\Omega$ teljes örvényességre vonatkozó egyenletnek is tekinthető. Az összefüggés sekély folyadékról fogalmazza meg azt, amit korábban kvalitatívában tárgyalunk (1. (1.3) ábra): bármely fel- vagy leáramlás, vagyis nullától eltérő divu forgatott rendszerben mindig örvényességet hoz létre.

Félhasználva a folyadékmélységre vonatkozó (2.9) egyenletet, azt kapjuk, hogy:

$$
\frac{d\zeta_T}{dt} = \frac{\zeta_T dh}{h dt},
$$

(2.20)

\footnote{Az egyenlet akkor is érvényben marad, ha Ω helyfüggo!}
mely szerint a teljes örvényesség változását a mélység változása határozza meg. A fenti összefüggés úgy is írható, hogy a

\[
q = \frac{\zeta r}{h} H \equiv \frac{\zeta + 2\Omega}{h} H
\]

(2.21)
mennyiség, az ún. potenciális örvényesség\(^6\) megmaradó mennyiség:

\[
\frac{dq}{dt} \equiv \frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} + v \frac{\partial q}{\partial y} = 0.
\]

(2.22)
A teljes örvényesség és az aktuális mélység hányadosának tehát állandónak kell maradnia a pályavonal mentén haladva. Ez erős megszorítás, mert azt jelenti, hogy pl. mélyebb folyadékéretbe kerülve megnő a teljes örvényesség (2.4. ábra).

2.4 ábra: A potenciális örvényesség megmaradásának jelentése: mélyebb folyadékban az oszlopok forgása felgyorsul, összhangban az impulzusnyomaték megmaradásával.

A potenciális örvényesség megmaradásának mechanikai magyarázata az impulzusnyomaték megmaradása, a tömegmegmaradással kiegészítve. Tekintsünk egy \(r\) sugarú, \(h\) magasságú hengert. A tömegmegmaradás állandó sűrűség mellett azt jelenti, hogy a henger térfigurája, tehát \(r^2 h\) állandó. Az \(\omega\) szögsebességgel forgó henger tehetsérgyakorlattal nyomolatka \(r^2\)-tel arányos, impulzusnyomatéka pedig \(r^2\omega\)-val. Az impulzusnyomaték tétele tehát egy hengeres alakzatra az \(\omega/h\) = állandó feltételt írja elő.

A potenciális örvényesség elnevezés arra utal, hogy a folyadékéret vastagodása esetén fel szabadul az az örvényesség, melyeként maga a folyadékéretben felhalmozódott. A potenciális örvényesség központi jelentőségű fogalom a környezeti áramlások megértésében.

Végezetül érdemes megadni a potenciális örvényesség dimenzióit alakját. Mivel \(\zeta\) egysége \(U/L\), a potenciális örvényességet is \(U/L\) egységekben mérjük, s így

\[
q = \frac{\zeta \pm 1/Ro}{h}.
\]

(2.23)

A potenciális örvényességet gyakran a konstans \(H\) tényező nélkül definiálják.
2.4 Gyorsan forgatott sekély folyadék: a geosztrofikus egyensúly

Vizsgáljuk meg a gyors forgatás hatását sekély folyadékban, azaz tekintsük a kis Rossby-szám határesetet. Ekkor már nem feltevés az, hogy az áramlás sebessége nem függ a függőleges iránytól, mert az a Taylor-Proudman-tétel következménye.

A geosztrofikus áramlás feltétele nyilvánvalóan most is az, hogy a Coriolis-erő és a nyomási erő kompenzálják egymást. Ehhez a felületi alakváltozásból adódó járuléknak is $1/R_0$ rendűnek kell lennie (2.15)-ban, azaz a Froude-szám nem lehet figyelemre a Rossby-számtól.

Az u_g geosztrofikus áramlást most a szabad felszín alakja határozza meg. A dimenziós (2.11) és (2.12) egyenletekből

$$v_g = \frac{g}{2\Omega} \frac{\partial \eta}{\partial x}, \quad u_g = -\frac{g}{2\Omega} \frac{\partial \eta}{\partial y},$$

következik. A sekély folyadékban kialakuló geosztrofikus áramlásra tehát ugyanazok az össze-végzésének értékei, mint mély közegben, csak most a dinamikai nyomást a szabad felszín alak határozza meg (2.5) szerint. A geosztrofikus áramlás ezért merőleges a szabad felszín gradiensére, a felület szintvonalaikat követi. Pozitív Ω esetén, az áramlási iránytól jobbra található a magasabb felszín.

A (2.24) geosztrofikus áramlás divergenciája eltűnik, az áramlás kétdimenziós. Ebből tudjuk, hogy létezik egy (1.52)-nek eleget tevő áramlási függvény. (2.24) éppen annak felel meg, hogy

$$\psi = \frac{g}{2\Omega} \eta.$$

Az áramlási függvény tehát arányos magával a felszín alakkal.

A (2.13) kontinuitási egyenletből időfüggően esetre ugyanakkor az következik, hogy

$$u_g \frac{\partial h}{\partial x} + v_g \frac{\partial h}{\partial y} = 0,$$

azaz a geosztrofikus sebesség merőleges a mélységi szintvonalaikra, a h-állandó görbékre is. Ez $d \neq$ konst esetén csak úgy lehetséges, ha a kialakuló felszíní forma arányos a domborzattal:

$$\eta = C \cdot d,$$

ahol C egy 1-nél jóval kisebb állandó. Ekkor tehát az is igaz, hogy az áramlás a domborza szintvonalaikt követi.

A geosztrofikus határesetben a ζ relatív örvényesség a potenciális örvényesség (2.21) kifejezésében elhanyagolható a forgatási szögesbesség mellett (1. (2.23)), azaz

$$q = \frac{2\Omega}{h} H.$$

Ezért (2.22) szerint időfüggően esetben fenn kell állnia az

$$u_g \frac{\partial}{\partial x} \left(\frac{2\Omega}{h} \right) + v_g \frac{\partial}{\partial y} \left(\frac{2\Omega}{h} \right) = 0$$

feltételnek. Mivel Ω állandó, ez ismét azt jelenti, hogy az áramlás a h mélység gradiensére merőleges. A dinamikai egyenlet és a belőle következő megmaradási tétel azonos feltételekre vezet. A
folyadékoszlopok tehát csak azonos vízmélységű tartományokban mozoghatnak, hiszen különben potenciális örvényességük nem lehetne állandó. Ezzel a Taylor-kísérlet újabban magyarázatát kapjuk a sekély folyadék elmdet keretében: a korong peremén a vízmélység ugrászerűen változik, melyen a külső áramlás nem hatolhat át.

A geostrofikus sebességek eloszlás és felszíni alak tetszőleges lehet, de köztük a (2.24) kapcsolatnak kell fennállnia. Formájukat a rendszer előírta alakja vagy egyéb nem geostrofikus folyamatok határozzák meg. Érdemes néhány példában megvizsgálni, hogy konkrét felszíni alakokhoz milyen geostrofikus áramlások tartoznak.

2.5 ábra: Az x irányban növekvő $\eta(x)$ felszíni alak következében kialakuló $v_g = (g/2\Omega)\eta(x)/dx$ nagyságú, pozitív y irányú geostrofikus áramlás.

Tegyük fel, hogy a felszíni alak csak x-től függ, s adott $\eta(x)$ függvény szerint változik (2.5 ábra). A (2.24) összefüggés szerint a geostrofikus áramlás y irányú lesz, s akkor mutat a pozitív y irányba, ha a felszín emelkedik x növekvő értékeire. A Föld szögsebességevel számolva, $v_g = 1\text{m/s}-os$ áramlás kialakulásához $\eta(x)/dx = 10^{-5}$ nagyságú gradientre van szükség, tehát 100km-enként 1méternyi emelkedésre. A Golf-áramlat esetében ilyen felszínelmekedés valóban megfigyelhető. Modellünk ott felel meg az áramlatnak, ahol az meg az Észak-amerikai partvonál által párhuzamosan halad. Az áramlat szélessége $50 - 100 \text{km}$, s ezen a távolságon az átlagos tengerszint a műholdas mérések szerint ténylegesen emelkedik egy méternyit. A Golf-áramlat tehát első közelítésben geostrofikus egyensúlyban levőnek tekinthető.

Második példaként tekintsünk egy lokális felszíni kiduradási, melyet az $\eta(r)$ forgásszimmetrikus függvény ír le (1. 2.6 ábra). A sebesség nagysága csak a radiális koordinátától, r-től függ: körkörös áramlás jön létre. Pozitív Ω esetén egy negatív előjelű köráram alakul ki, mely anticiklonális áramlásnak felel meg. Ez a geometria jellemzi a Golf-áramlattól északra leváló (meleg) gyűrűket. A tőle délre kerülő ciklonális jellegűek, közepükön felszíni behorpadással.

2.6 ábra: A forgásszimmetrikus $\eta(r)$, r-rel csökkenő felszíni alak $g/(2\Omega)|\eta(r)/dr|$ nagyságú, negatív körüli járású, anticiklonális geostrofikus áramlást tart fenn.

Az óceán medencékben mindkét feltekén létezik egy-egy hatalmas körkörös áramlás, melyek kialakulásában az uralkodó szerepek nagy szerepe van. Mindegyik medence belsejében egy-két méterrel magasabb az átlagos vízszint, mint a szélen. Első közeltésben mind a négy nagy köráram (angolul gyre) geostrofikus egyensúlyban van (2.7 ábra).
2.7 ábra: Az óceáni áramlások felszíni rendszere az Atlanti-, és a Csendes-óceán medencéjében mindkét feltételek közül egy-egy nagy (anticiklonális) köráramot, melyek közel geostrofikus egyensúlyban vannak (mindegyik belsejében a vízfelszín magasabb mint a szélén, a körülljárás anticiklonális). Az Észak-Atlanti-kőr nyugati ívét a Golf-áramlat alkotja.

2.5 Kvázigeoszтроfikus mozgás: a Rossby-hullám

2.5.1 Szemléletes kép

Megvizsgáljuk, mi történik, hogyha kissé eltávolodunk a geostrofikus határesettől, mely időfüggően változó áramlásokat ír le. Megengedjük, hogy a Rossby-szám kicsi legyen, de véges, és feltesszük, hogy a dimenzióttal hídrodinamikai gyorsulások egységeknek. A potenciális örvényesség megmaradása nyilván érvényben van, tehát igaz, hogy

\[
\frac{d}{dt} \left(\frac{\zeta + 2\Omega}{h} H \right) = 0. \tag{2.30}
\]

A potenciális örvényesség az áramlás során állandó, de \(\zeta \) most nem hanyagolható el \(\Omega \) mellett, ám \(|\zeta| \ll |\Omega| \).

Az egyszerűség kedvéért általában fogalmazunk a felszín vízszintes, \(\eta = 0 \) (alkalmazzuk a merev lap közelítését). A teljes mélység ekkor \(h = H - d \). A domborzatról fogalmazunk fel, hogy kissé lejt, méghozzá úgy, hogy az \(y \) irányban emelkedik (2.8 ábra).

Képzeljük el, hogy a folyadékban egy, az \(x \)- tengelyre párhuzamos egyenes vonaladab olyan részecskékből áll, melyek \(\zeta \) relatív örvényessége éppen 0. A vonalat egy helyen a vízszintes síkban enyhén meghajlítjuk a növekvő \(y \)-értékek irányába. Itt kisebb lesz a görbe alatti folyadékmélység, mint ahonnan kimozdítottuk. Ha csökkentik a teljes mélység, akkor a \(q \) potenciális örvényesség csak úgy maradhat meg pozitív \(\Omega \) mellett, ha a \(\zeta \) relatív örvényesség is csökken: a folyadék forogni kezd, \(\zeta \) negatív változik (2.9a. ábra). A negatív örvényesség negatív körülljárású áramlást indít, mely a gőrbüketódódást és termálizást, méghozzá balra. Ez a zavar végighalad a vonal mentén: hullámszerű mozgás alakul ki.

Ugyanezt a gondolatmenetet egy színuszfüggvényes kör alakú deformációra alkalmazva, az \(y \)-tengely mentén lefelé történő küüremkedés körül pozitív irányú körkörös áramlás jön létre, de az alakzatot az is a negatív \(x \) irányba mozgatja (2.9b. ábra). Miközben az egész hullám ebbé az

7A 9.1 fejezetben megmutattuk, hogy \(Ro \ll 1 \) esetén a megmaradási törvény egyenértékei az egész sekély-folyadék egyenlőrendszerek.

8Geostrofikus egyensúlyban ez nem lenne megengedett.
2.8 ábra: Rossby-hullámok kialakulásához szükséges döntött aljzat.

2.9 ábra: A Rossby-hullámok kialakulási mechanizmusa az \((x, y)\) síkban pozitív forgatási irány esetén. a) Az eredetileg vízszintes, zérus örvényességű folyadék vonalon kialakított kis \(y\) irányú kitürelkedés a potenciális örvényesség megmaradása következtében negatív köráramlást hoz létre, mely a púpot balra tolja. b) Egy hullámalak felváltva hoz létre negatív és pozitív örvényességet a hullám maximális, ill. minimális kitörésének megfelelően, s mindkét hatás a negatív \(x\) irányba történő elmozduláshoz vezet.

irányba halad, az egyes \((x, y)\) pontokhoz tartozó folyadékoszlopop az \(y\) irányban oszczillálnak, s ezzel magasságuk és alapterületük is változik. A hullám terjedési sebessége sokkal nagyobb, mint az áramló sebesség, mely a Taylor-oszlopop gyenge \(y\) irányú mozgásából adódik. A különböző örvényességű helyekotolják előre maguk között azt a vonalat, mely egész mozgása során állandó potenciális örvényességű marad.

Az ilyen hullámokat első leírójukról Rossby-hullámoknak nevezzük. Mivel domborzati lejtés nélkül nem jelenhetnek meg, a topográfikus jelzővel látjuk el őket. Új típusú hullámokról van szó, melyek csak forgatott folyadékban létezhetnek. A geostrofikus egenságtól való kis eltéréseknél felesleges, ezért a Rossby-hullámok a forgatott közegbeli leglassúbb hullámok. A bemutatott gondolatmenet azt illusztrálja, hogy Rossby-hullámok bármilyen monoton változó domborzat esetén kialakulnak, amplitudójuk nem feltétlenül kicsi, azaz ezek a hullámok nemlineárisak is lehetnek.

Érdemes elgondolkoznunk azon, hogy miért kitüntetett a negatív \(x\) irányba haladás. Ennek oka az, hogy a forgatott rendszerben zajló jelenségek nem invariánsak az időfüggésre. A pozitív forgás adott lejtés mellett kitüntet egy \((x, y)\) síkbeli irányt: a hullámok úgy terjednek, hogy
a sokfélebb közeg a haladási iránytól jobbra esik. Természetesen megváltoztatott forgásirány esetén a hullámok az ellenkező irányba haladják. Az idő és a forgatás előjelét egyszerre kell megváltoztatnunk ahhoz (hasonlóan a mágneses térben mozgó töltött részecske esetéhez), hogy invarianciát találjunk.

2.5.2 Lineáris elmélet

A Rossby-hullám kvalitatív tulajdonságai leírásához tegyük fel, hogy a domborzat egyenlete-

\[d(y) = \gamma y \]

az \(y = 0 \) vonal valamely \(y_{\text{max}} = L \) szélességű környezetében. A \(\gamma \) meredekségő felület felületének, hogy kicsi, azaz a mélységváltozás elhanyagolható a teljes mélységhez képest az egész vízsgált tartományban: \(d(y) \ll H \), melyből \(\gamma y_{\text{max}} = \gamma L \ll H \). Ennek feltétele az, hogy a

\[Be \equiv \frac{L}{H} \]

dimenziólatlan topográfiai paraméter egynél jóval kisebb. Ez azt követeli meg, hogy a \(\gamma \) gradiens még az \(\varepsilon = H/L \) mélységi aránynál is kisebb legyen. A \(q = (\zeta + 2\Omega)/(1 - d/H) \) potenciális örvényesség ezért jó közeliessel írható mint:

\[q = \frac{\zeta + 2\Omega}{1 - \gamma y/H} \approx \left(2\Omega + \zeta + \frac{2\Omega y}{H} \right) \]

Itt feltettük, hogy \(\gamma y/H \leq Be \) legfeljebb ugyanolyan nagyságra, mint \(\zeta/(2\Omega) \) (az utóbbi átlaga a Rossby-szám), s ezért szorzatukat elhanyagoltuk. A potenciális örvényesség első tagja, \(2\Omega \), definíció szerint konstans, a megmaradási tétel ezért a két utolsó tagra jelent megzorítást:

\[\frac{d(\zeta + 2\Omega y/H)}{dt} = \frac{d\zeta}{dt} + \frac{2\Omega y}{H} = 0. \]

Kis amplitúdójú mozgást vízsgálva, \(\zeta \) advektív deriváltja másodrendűen kicsi, ezért elhanyagolható, és így a

\[\frac{\partial \zeta}{\partial t} + v \frac{2\Omega y}{H} = 0 \]

lineáris egyenletet kapjuk.

A kialakult áramlást az \(u = (u_0, v_0) \exp(i\omega_0 t - ik_x x - ik_y y) \) exponenciális alakban keressük, ahol \(\omega_0 \) a hullám frekvenciája, \(k \) a hullámszám vektrora. Feltehető, hogy \(u \) vezető rendben divergenciamentes. Ez azért jogos, mert a potenciális örvényesség megmaradását a (2.35) egyenlet \(Ro \) rendig helyesen veszi figyelembe, az egyenlet pontosabb a geczesztfokú közeliéssel, s ezért az áramlást magát már közel összenyomhatatlanakként tekintetjük a vízszintes síkban (mint a geczesztfokú áramlást). Ezért \(u_0 = -v_0 k_y/k_x \), s az órvényesség

\[\zeta = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = -i(k_x v_0 - k_y u_0) e^{i(\omega_0 t - k_x x - k_y y)} = -i v_0 \frac{k_x}{k_y} e^{i(\omega_0 t - k_x x - k_y y)}, \]

ahol \(k^2 \equiv k_x^2 + k_y^2 \). Ezt a (2.35) egyenletbe helyettesítve algebrai egyenletet kapunk, melyből

\[\omega_0 = -\frac{2\Omega k_x}{H k^2} \]

41
Ez a topografikus Rossby-hullám diszperziós relációja\(^9\) (2.10. ábra). Érdekes tulajdonság, hogy adott k-hoz \textit{egyetlen} frekvencia tartozik, tehát nem létezhet egyszerre egy k irányába és egy vele ellentétesen haladó hullám. A Rossby-hullámok nem képezhetnek állóhullámokat.

A Rossby-hullám forgatott rendszerben is csak akkor alakul ki, ha a domborzat lejtős. Az \(1/L\) egységekben mért hullámszámmal a dimenzióáltan diszperziós reláció:

\[
\frac{\omega_0}{2\Omega} = -B\frac{k_x k_y}{k^2}, \tag{2.38}
\]

ahol \(Be\) a (2.32) topográfiai paraméter. Eszerint a Rossby-hullám lényegesen hosszabb időskalán változik, mint a forgatás periódusa. E hullám kvázidgeostrofikus jelenség, melyben a \(Ro \equiv |\omega_0/(2\Omega)|\) Rossby-szám mindig kicsi, ugyanolyan rendű, mint a \(Be\) topográfiai paraméter.

\[\text{2.10 ábra: A zárt felszínű (topografikus) Rossby-hullám diszperziós relációja a } k_x \text{ hullámszámkomponens függvényében, rögzített } k_y \text{ mellett. A szaggatott görbe az } x \text{ irányban haladó Rossby-hullám } (k_y = 0) \text{ diszperziós relációja.}\]

A Rossby-hullám \(x\), ill. \(y\) irányú terjedési sebessége

\[c_x = \frac{\omega_0}{k_x} = -\frac{2\Omega\gamma}{Hk^2}, \quad c_y = \frac{\omega_0}{k_y} = -\frac{2\Omega\gamma}{Hk_y k^2}. \tag{2.39}\]

Az \(x\) irányú sebesség \(\Omega\gamma > 0\)-ra mindig negatív, a hullám a negatív \(x\) irányba halad.

Példaként tekintsünk egy déli irányban enyhén mélyülő tengerpartot, mély 100 km-en 100 m-t süllyed, tehát \(\gamma = 10^{-3}\), és az átlagos mélység \(H = 50\)m. A 100km hullámszázsú, parttal párhuzamos hullám \((k_x = 2\pi \cdot 10^{-51}/m, k_y = 0)\) frekvenciája \(\omega_0 = -4.6 \cdot 10^{-51}/s\), tehát periódusideje 1,6 nap, terjedési sebessége \(c_x = -0.7\)m/s = \(-2.6\)km/h. A hullám lassúságára jellemző, hogy terjedési sebessége jóval kisebb az ugyanabban a közegben terjedő vízszintes hullámok \(c_0 = \sqrt{\gamma H} = 22\) m/s sebességénél.

Mivel a fázissebesség függ a hullámszámtól, a Rossby-hullám is erősen diszperzióvá válhat. A csoportsebesség:

\[c^* = \frac{\partial \omega}{\partial k_x} = \frac{2\Omega\gamma k_x^2 - k_y^2}{Hk^4}, \quad c'_y = \frac{\partial \omega}{\partial k_y} = \frac{2\Omega\gamma 2 k_x k_y}{Hk^4}. \tag{2.40}\]

Ez azt jelenti, hogy a csoportsebesség kétzser akkora szöget zár be a vízszintes tengelyvel, mint a \(k\) vektor (2.11. ábra). Ha figyelembe vesszük, hogy a hullám pozitív \(\Omega\gamma\) esetén a \(-k\) irányba halad, az energiaáramlás viszont a csoportsebesség irányába történik, akkor látható, hogy bármilyen szögben terjedhet energia.

\(^9\)Mindkét irányban lejtő aljzat esetén a számlálóban a különböző irányú gradiens hullámszámmkomponensekkel súlyozott kifejezése jelenik meg.
2.11 ábra: A zárt felszínű Rossby-hullámok c⁴ csoportsebességének iránya a k hullámszámvektorhoz képest.

2.6 Szabad felszínű Rossby-hullámok

Most megengedjük, hogy a felszín szabad legyen, η változhasson térben és időben, és vizsgáljuk, hogy ez mennyiben módosítja a topografikus Rossby-hullám tulajdonságait. A teljes mélység

\[h = H(1 + \eta / H - \gamma y / H). \] \hspace{1cm} (2.41)

Feltéve ismét, hogy az 1 után álló dimenziótlan tagok mind Rossby-szám nagyságrendűek, a potenciális örvényesség

\[q = \frac{\zeta + 2\Omega}{(1 + \eta / H - \gamma y / H)} \approx \left(2\Omega + \zeta - \frac{2\Omega \eta}{H} + \frac{2\Omega \gamma}{H} \right). \] \hspace{1cm} (2.42)

Kis amplitúdójú hullám esetén a másodrendű advektív derivált elhanyagolható, és a (2.22) megmaradás törvény szerint

\[\frac{\partial}{\partial t} \left(\zeta - \frac{(2\Omega)^2}{g H} \phi \right) + \frac{2\Omega \gamma}{H} \frac{\partial}{\partial x} \phi = 0. \] \hspace{1cm} (2.43)

Mivel minélkét tag kicsi, \(v \) és \(\zeta \) kifejezéséhez használhatjuk a geosztrófikus határesetből ismert összefüggést, miszerint a felszín alak arányos az áramló függvényt: \(\psi = \eta g/(2\Omega) \) (l. (2.25)). Ezzel \(v = \partial \psi / \partial x \) és \(\zeta = \partial \psi \). Így azt kapjuk, hogy az áramló függvénynek ki kell eligitenie a

\[\frac{\partial}{\partial t} \left(\Delta \psi - \frac{(2\Omega)^2}{g H} \phi \right) + \frac{2\Omega \gamma}{H} \frac{\partial}{\partial x} \psi = 0. \] \hspace{1cm} (2.44)

eyenletet. A \(\psi = \psi_0 \exp(i \omega_0 t - i k_x x - i k_y y) \) alakú megoldásból leolvasható, hogy

\[\omega_0 = \frac{2\Omega \gamma}{H} \frac{k_x}{k^2 + R^{-2}}. \] \hspace{1cm} (2.45)

Itt

\[R \equiv \left(\frac{g H}{2|\Omega|} \right)^{1/2} = \frac{c_0}{2|\Omega|}, \] \hspace{1cm} (2.46)

az ún. Rossby-féle sugár, a szabad felszínnel kapcsolatos új hosszúság jellegű mennyiség. A Rossby-sugár reciprokát Rossby-hullámszámnak nevezik.

A diszperziós reláció a \(R \)-nél rövidebb hullámhosszakra úgy viselkedik, mint a zárt felszínű esetben (2.12. ábra). Eltérés a hosszú hullámhosszaknál (kis hullámszám) mutatkozik, ahol a

\(^{10}\)Mindkét irányban lejtő aljzat esetén a szimulációban a különböző irányú gradiens hullámszám-komponensekkel súlyozott kifejezése jelentik meg.
felszíni változásból adódó járulék dominál. A szabad felszín hatása tehát csak az olyan hosszú hullámokban figyelhető meg, melyek hullámszáma R^{-1}-nél kisebb. Más szavakkal, a rövid hullámokban nagyon csökély a felszíni ingadozás, rájuk a merv lap közéltés jogos. Ez a helyzet az előző fejezet példájában is, ahol a $H = 50$ m átlagos mélységgel a Rossby-sugár $R = 100$ km-nek adódik, és $R^{-1} \ll k_x$.

![Diagram](image.png)

2.12 ábra: Az x irányban haladó ($k_y = 0$) szabad felszínű Rossby-hullám diszperziós relációja a k_x hullámszámkomponens függvényében. A szaggatott görbe a zárt felszínű Rossby-hullám diszperziós relációja.

A mozgó szabad felszín a Rossby-hullámokat lassítja: $|\omega_0|$ bármilyen k_x, k_y értékre kisebb, mint $|\Omega\gamma/R/H$. Rossby-hullámok tehát legfeljebb csak ilyen frekvenciával gerjeszthetők. Új vonás, hogy a Rossby-sugár megjelenése végessé teszi a hullám ω_0 frekvenciáját, még x irányú terjedéskor is. Ezért a legnagyobb elérhető fizikai paraméter is véges, $-2\Omega\gamma R^2/H$. Ezt a nagyon hosszú hullámok ($k_x \to 0$) valósítják meg, melyek már nem diszperzálók: az origó körül a diszperziós reláció lineáris a hullámszámban (2.12. ábra). A csoportsebesség a diszperziós reláció szélsőségtéke körül, azaz $k_x \leq R^{-1}$-re (1. 2.12. ábra) negatív. Egyébként pozitív, vagyis ellentétes irányba mutat, mint a fázissebesség.

A hullám terjedési iránya kvalitatívban megértethető a kis hullámszámú esetben is (2.13. ábra). Tegyük fel, hogy kialakult egy kidudorodás a felszínen. Ez, mint láttuk, antikiklónikus áramlást indít el. A kidudorodás jobb oldalán tehát negatív y irányba haladó mozgás alakul ki, de ezzel a folyadékoszlók mélyebb folyadéka kerülnek, ahol a ζ örvényesség a megmaradási tétele miatt nő, s ez a pozitív örvényesség-növekmény a negatív x irányba tolja a kidudorodást.

![Diagram](image.png)

2.13 ábra: A Rossby-hullámok kialakulási mechanizmus a felszín kidudorodása miatt ($\Omega > 0$) a lapra merőleges (y) irányban sekélyedő folyadékban: a potenciális örvényesség megmaradása következtében antikiklónikus örvénylés jön létre, mely a csökkenő x értékek irányába tolja a kidudorodást.

11 Ezért ez a közéltés formálisan az $R \to \infty$ határesetnek felel meg.
Mivel a hidrodinamikát vezető rendben az áramlású függvényel jellemzők, melyből a geceztrofikus szabályok szerint számolhatjuk ki a változókat, a ψ függvény arányos a felszín alakkal, deriváltjai pedig a sebességkomponensekkel. Ezért a felszín alak és a sebesség negyed fázisnyi eltérésben vannak (2.14 ábra). A hullámleíró folyadékrészek mozgása vezető rendben a terjedési irányra merőleges rezsés a vízszintes síkban. A Rossby-hullámok jelenléte az óceáni és légköröz mozgásokban ezen tulajdonságok alapján mutatható ki.

2.14 ábra: A felszín alak és sebességfokozás egy x irányban terjedő szabad felszínű Rossby-hullám. (A zárt felszínű esetben η szerepét a p' dinamikai nyomás veszi át, és a Rossby-sugár formálisan végtelen.)

A Rossby-hullámok kísérletileg jól tanulmányozhatók egy olyan hengeres edényben, melynek az alja kúpos (2.15. ábra). Egy cikkelyt kiválasztva, a geometria közelítőleg ugyanaz, mint amit az elméleti leírásban feltételeztünk. Ha az aljzat a tengely felé emelkedik, és a forgatás pozitív irányú, akkor az együttható forgó megfigyelő (pl. videokamera) balra vonuló Rossby-hullámokat lát, s a fent leírt tulajdonságok kísérletileg is ellenőrizhetők (2.16. ábra). Később látni fogjuk, hogy ilyen berendezéssel a Föld görbületéből adódóan leletkező planetáris Rossby-hullámok is jól modellezhetők, melyek a nagy léptékű és lassú légkörí és tengeri mozgások meghatározó elemei.

2.15 ábra: A Rossby-hullámok laboratóriumi vizsgálatához kúpos aljzatú hengert használunk.

Mivel a Rossby-sugár a későbbiekben is alapvető szerepet játszik, érdemes röviden összefoglalni tulajdonságait. Ez az a lineáris méret, ahol a Coriolis-hatás összemérhető a nehézségi gyorsulásból adódóval, s ezért minden jelentős felszínváltozóval kapcsolatos jelenségeken megjelenik. A Föld forgási szöge sebességet és néhány km-es H vastagsággal számolva (mely mind az óceánban mind a légkörben jogos) R néhány ezer km-nek adódik. Ez a nagyskalájú légköröz és óceáni mozgásokra jellemző távolság homogén közegekben.

Vegyük észre, hogy a dimenziótlan (L egységekben mért) Rossby-sugár az (1.3) Rossby-szám és a (2.17) Froude-szám hányadosa:

$$\frac{R}{L} = \frac{Ro}{Fr}$$ \hspace{1cm} (2.47)

Ez az arány a gravitációs és a forgatásból adódó hatások viszonyát adja meg. Egység körüli értéke a kétfele hatás összemérhetőségét jelenti, mely alapvető fontosságú a kvázigéoosztrofikus közeliésben.
2.16 ábra: A Rossby-hullám feléből megfigyelt áramlási képe. A pozitív irányban forgó edényben a hullámot a kép bal alsó részén elhelyezett akadály kelti. A hullám az együttforgó megfigyelő szempontjából az óramutató járásának megfelelő (negatív) irányba halad.

2.7 A kvázigosztrofikus egyenlet

Tekintsünk most egy tetszőleges $d(x, y)$ domborzatot, melynek maximuma az átlagos H mélységéhez képest feltéve sderint kicsi. A felszínű η egyenetlenségek kicsinyiségét is feltételezve, a potenciális örvényesség

$$q = \frac{\zeta + 2\Omega}{1 + \eta/H - d/H} \approx \left(2\Omega + \zeta - \frac{2\Omega \eta}{H} + \frac{2\Omega d}{H} \right). \quad (2.48)$$

Mivel a felszínű alak vezető rendben arányos az áramlási függvényvel ($\psi = \eta g/(2\Omega)$), a megmaradási törvény a fenti q-ra a

$$\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial \psi}{\partial x} \left(\Delta \psi - R^{-2} \psi + 2\Omega \frac{d}{H} \right) = 0 \quad (2.49)$$

alakot ölti. Ez az áramlási függvényre vontakozó nemlineáris parciális egyenlet, a süröldásmentes sekély folyadék kvázigosztrofikus egyenlete. Ez a lehető legegyszerűbb típusú hidrodinamikai egyenlet, hiszen egyetlen skalárfüggvényre vonatkozik. Az az érdekes helyzet állt elő, hogy a gyorsan forgatott sekély folyadék lassú viselkedését enyhé domborzati egyenetlenségek mellett egy olyan egyenlet írja le, mely egyszerűbb a teljes sekély folyadék dinamikájánál (három csatolt parciális differenciálegyenlet). Sáma aljjat, $\psi = 0$ esetén egyetlen paraméterként a Rossby-sugarat tartalmazza. A zárt felszínű eset (mérév lap közelítés) az $R \rightarrow \infty$ limitre felé megy.

A topográfikus Rossby-hullám a fenti kvázigosztrofikus egyenlet megoldása egyenletesen változó domborzatra. Annak ellenére, hogy az előző fejezetben lineáris közelítésben vezettük le a $\psi = \psi_0 \exp(i\omega_0 t - ik_x x - ik_y y)$ alakú megoldás létezését a (2.45) diszperziós relációval, behelyettesítéssel elérhető, hogy ez az exponentiális hullámalak a teljes nemlineáris egyenletnek is megoldása. Ez mutatja, hogy Rossby-hullámok a legkülönbözőbb körülmények között is előfordulhatnak. A nagy amplitudójú, nemlineáris Rossby-hullámokra természetesen már nem érvényes a szuperpozíció elve, összegük már nem megoldás.

A nagyságról csoportos vele és a közöltés érvényességi körének felderítése érdekében megadjuk a dimenzióltanított alakot is. Kilátható, hogy az áramlási függvény mértékegysége UL, azt
kajuk, hogy

\[
\left[\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right] \left(\Delta \psi - \left(\frac{Fr}{Ro} \right)^2 \psi + \frac{d}{Ro} \right) = 0. \tag{2.50}
\]

Itt a domborzatot \(H \) egységekben mérjük, és \(Fr/\text{Ro} = L/R \) a dimenzióttal Rossby-hullámszám. A levezetésben kihasználtuk, hogy a Froude-szám legfeljebb Rossby-szám rendű, tehát \(Fr/\text{Ro} \leq 1 \). Az utolsó tagból leolvasható, hogy a dimenzióttal domborzati alaknak \(\text{Ro} \) rendűnek kell lennie a kvázigéosztrofikus közélítésben, hogy \(d/\text{Ro} \) is egységnyi lehessen. Az, hogy az egyenlet ekkor a Rossby-számú független, az eljárás konzisztenciaját mutatja. A szabad felszín hatása akkor jelentős, ha \(Fr/\text{Ro} \) egységyi. Az \(Fr/\text{Ro} \ll 1 \) eset megengedett, s csekély felszínmozgadásnak felel meg. Két kvázigéosztrofikus áramlás akkor hasonló, ha bennük a \(d/\text{Ro} \) dimenzióttal domborzat azonos, s a Froude- és Rossby-számok húzódása is azonos (ilyenkor dimenzióttal Rossby-sugárú, \(R/L \) is megegyezik).

Az \(y \) irányban egyenletesen lejtő domborzat, \(d = \gamma y \) esetén a dimenzióttal kvázigéosztrofikus egyenlet

\[
\left[\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right] \left(\Delta \psi - \left(\frac{Fr}{Ro} \right)^2 \psi \right) + \frac{Be}{Ro} \frac{\partial \psi}{\partial x} = 0. \tag{2.51}
\]

Ebben az osztályban két kvázigéosztrofikus áramlás akkor hasonló, ha mind a Froude-szám, mind a \(Be \) topográfikus paraméter Rossby-számhoz viszonyított értéke azonos (s mindkét húzódás legfeljebb egységnyi).

A kvázigéosztrofikus egyenlet egyszerűsége ellenére rendelkezik turbulens megoldásokkal is. A benne megjelenő Rossby-sugár mint új karakterisztikus hozzászág szabja meg a kialakuló turbulens örvények tipikus méretét. Az egyenlet ezért alkalmaz a forgató közegekben kialakuló geosztrofikus turbulencia leírására is, mely a legközép és az óceánok legbonyultabb mozgástípusa. Első levezetőjéről (2.49)-t Charney-egyenletnek is nevezik (J. G. Charney (1917-1981) amerikai meteorológus; 1950-ben egyenlete számítógépes megoldásával kezdődhetett meg a numerikus meteorológiai előrejelzés, melyhez Neumann János is nagyban hozzájárult).

2.8 Tehetetlenségi gravitációs (Poincaré-) hullámok

A (2.11)-(2.13) sekélyfolyadék egyenlet vizsgálati aljazt, \(d = 0 \) esetén gyors lineáris hullámokat is leír. Ezek a tehetetlenségi-gravitációs hullámok, melyeket Poincaré-hullámoknak is neveznek.

A linearizált egyenletekben az advektív gyorsulási tag nem jelenik meg, és a (2.13) egyenletben a \(h = H + \eta \) tényező \(H \)-val helyettesítő:

\[
\frac{\partial u}{\partial t} = +2\Omega v - g \frac{\partial \eta}{\partial x}, \tag{2.52}
\]

\[
\frac{\partial v}{\partial t} = -2\Omega u - g \frac{\partial \eta}{\partial y}. \tag{2.53}
\]

\[
\frac{\partial \eta}{\partial t} = -H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right). \tag{2.54}
\]

Az \((u, \eta) = (u_0, v_0, \eta_0) \exp(i\omega t - ik_x x - ik_y y)\) feltévessel \(k \) hullámszámú síkhullámmegoldást keresve a

\[
i\omega \eta u_0 = 2\Omega v_0 + ik_x g \eta_0, \tag{2.55}
\]

\[
i\omega v_0 = -2\Omega u_0 + ik_y g \eta_0. \tag{2.56}
\]

47
\[\dot{\omega}_0 \eta_0 = H(ik_x u_0 + ik_y v_0) \]
(2.57)
polarizációs egyenletre jutunk. Ebből a nemtriviális megoldás feltétele

\[\omega_0^2 = 4Q^2 + gHk^2. \]
(2.58)
A tehetetlenségi gravitációs hullámok diszperziós relációja tehát

\[\omega_0 = \pm (4Q^2 + gHk^2)^{1/2} = \pm 2\Omega \left(1 + (Rk)^2 \right)^{1/2}, \]
(2.59)
ahol \(k = (k_x^2 + k_y^2)^{1/2} \) a hullámszámvektor hossza, \(R \) pedig a (2.46) Rossby-sugár. \(\Omega = 0 \)-ra a hagyományos hidrodinamikából jól ismert sekély vízi gravitációs hullámokat kapjuk, melyekhez konstans

\[c_0 = \sqrt{gH} \]
(2.60)
fázissebesség tartozik. A \(gH \to 0 \) esetben a diszperziós reláció a tehetetlenségi hullámkénak felel meg (1. (1.70) ha \(k_y = 0 \)), melyben a részecskének a tehetetlenségi körmozgást követik. Véges \(gH \) mellett a tehetetlenségi mozdulat hozzáadódik a gravitációs hullámzásra, s ezzel egy minimális frekvencia jelenik meg: a rezgéseken csak gyorsabbak lehetnek 2\(\Omega \)-nál (2.17 ábra). A sekélyvízi hullámoaktól való eltérés a Rossby-sugár által nagyobb hullámhosszakra vállik jelentősebb. Más szóval a rövid hullámhosszú mozgások olyan gyorsak, hogy nem érzékelik a forgatás jelenlétét. Ez ismét mutatja, hogy \(R \) az a távolság, ahol a forgatás és a gravitáció hatása összemenhető. A hullám csoportsebessége általában nem egyezik meg a fázissebességgel, de mivel \(\omega_0 \) a hullámszám abszolútértékét tartalmazza, \(e^* \) párhuzamos \(k \)-val.

![Diagram](image)

2.17 ábra: A tehetetlenségi-gravitációs (Poincaré-) hullám és a Kelvin-hullám (szaggatott vonal) diszperziós relációja a hullámszám \(k_x \) komponensének függvényében (\(k_y = 0 \)).

A (2.55)-(2.57) egyenletekből a hullám összetevőinek viselkedése is leolvasható. Az egyszerűség kedvéért \(x \) irányban haladó síkhullámot vizsgálva (\(k_y = 0 \)), (2.56)-ből \(v_0 = i2\Omega u_0/\omega_0 \).

\(^{12}\)Ez az összefüggés következik a (2.52)-(2.54)\ból a felületi alakra kapott zárt egyenletből is. A fenti összefüggéseket rendre \(x \), \(y \) és \(t \) szerint deriválva és a vegyes második deriváltakat kiküszöbölte kapjuk, hogy \(\partial^2 \eta/\partial^2 t - gH \Delta \eta + 2\Omega \eta = 0 \). A (2.21) potenciális érvényesség megmaradása miatt \((\zeta + 2\Omega)/H + \eta = 2\Omega/H \), hiszen a nyugalmi állapothoz nem tartozik sem sebesség, sem felületi elmozdulás. Ezzel egy konstans erőjeg \(\zeta = \eta + \eta / H \), a felületi alak egyenlete \(\partial^2 \eta/\partial^2 t = gH \Delta \eta + (2\Omega)^2 \eta = 0 \). Ez ekvivalens a kvantummekanikából ismert \(\partial^2 \Psi/\partial^2 t = c^2 \Delta \Psi + (m_0 c^2 / h)^2 \Psi = 0 \text{ Klein–Gordon-egyenlet} \\), mely a zérus spinű, \(m_0 \) nyugalmi tömegű szabad részecskék relativisztikus állapotegyenlete. Ezért nem meglépő, hogy a (2.58) összefüggés egyenértéke az \(E^2 = m_0 c^2 + c^2 (k h)^2 \) relativisztikus energiakifejezéssel. A megfeleltetés a két probléma között: \(E/h \leftrightarrow \omega_0 \), \(c^2 \leftrightarrow gH \), \(2\Omega \leftrightarrow m_0 c^2 / h \).
A két sebességkomponens tehát negyed fázisanyi eltérésben van, nagyságuk nem azonos, a haladási irányba mutató sebesség mindig nagyobb. A sebességvektor végpontja egy ellipszis mentén mozog a vízszintes síkban, pozitív Ω mellett negatív irányban (2.18 ábra). A nagy tavak és óceánok felső vízrétegeinek összclációjában megfigyelhető a vízszintes síkbeli sebességvektor időbeli elfordulása, antiklonális körülvágással. Ez bizonyítja a tehetségességi hullámok jelenlétét. Períódusuk rendszerint közel van a tehetségességi mozgáséhoz.

2.18 ábra: A sebességvektor mozgása tehetségességi-gravitációs hullámokban. A mozgás ellipszispályán történik, mely a hullám haladási irányában (jelen esetben az x tengely) nyújtott. A körülvágás antiklonális. Rövid hullámokra ($k_x \to \infty$) az ellipszis az u tengely mentén elhelyezkedő egyenes szakaszú nyúlik, a hullámra semmilyen hatása sincs a forgatásnak. Nagy hullámhosszakra viszont ($k_x \to 0$) az ellipszis a tehetségességi mozgásra jellemző körbe megy át.

Tehetségességi-gravitációs hullámok léteznek lejtős domborzat, $d = \gamma \gamma$ esetén is. Ekkor a (2.59) diszperziós reláció módosul, és γ is ad járulékot. Ezzel együtt megjelennek a rendszerben a lassú Rossby-hullámok is (9.2 fejezet).

A tehetségességi-gravitációs hullámokra a potenciális örvényesség megmaradása már nem egynértékű a teljes sekélyfolyadék egyenlettel. Most ugyanis a síkbeli divergencia egységnyi rendű is lehet, ezért az áramlás függvény használata nem jogos: három függvény dinamikai változók van (u,v,η), melyeket egyetlen skalár egyenlet, (2.22) nem helyettesíthet. A $Ro \equiv |\omega_0/(2\Omega)|$ Rossby-szám csak nagyobb lehet 1-nél. Fordítva, a kvázigosztrofikus közelítésben nem jelenhetnek meg a kétdimenziós áramlástól való jelentős eltérések, s ezért a tehetségességi-gravitációs hullámok sem. A közelítésnek megfelelő $Ro \ll 1$ esetben ezen hullámok frekenciája olyan nagy, hogy a Rossby-hullámok időskáján már nem követhető. A kvázigosztrofikus közelítés tehát kisűri a gyors mozgásokat, s csak a lassú időfejlődést írja le.

2.9 Kelvin-hullámok

A Kelvin-hullámok forgatott folyadékok határában haladó zavarak, perem menti mozgások, melyek az óceánokban parti hullámformáként fordulnak elő. A partra merőlegesen nem történik áramlás13. Ha a falat az x tengelynek tekintjük, és az állandó mélységű folyadék a felső felsikot tölti ki, akkor $v = 0$. A (2.52)-(2.54) linearizált sekélyfolyadék egyenletekben $(u,\eta) = (u_0,\eta_0) \exp(i\omega_0 t - ik_x x - ik_y y)$, $y > 0$ alakú megoldást keresve, (2.55)-(2.57)-ból az

$$i\omega_0 u_0 = ik_x g \eta_0,$$ \hspace{1cm} (2.61)

$$2\Omega u_0 = ik_y g \eta_0,$$ \hspace{1cm} (2.62)

$$i\omega_0 \eta_0 = i k_x Hu_0,$$ \hspace{1cm} (2.63)

13Ezt a peremfeltétele az ellipszis alakú részecsképályákat miatt Poincaré-hullámokkal nem lehet kielégíteni.
feltételt kapjuk. Az első és utolsó egyenletből

$$\omega_0 = \pm \sqrt{gH} k_x,$$ \hspace{1cm} (2.64)

tehát a hullám x irányban a $c_0 = \sqrt{gH}$ fázisveszteséggel halad, diszperziómentesen, éppúgy mint a sekély, nem forgatott folyadékbeli vízhullámok. Az első két egyenlet húnyadosából viszont

$$k_y = \frac{\pm 2\Omega}{i \sqrt{gH}} = \frac{\pm 1}{iR},$$ \hspace{1cm} (2.65)

ahol R a Rossby-sugár. Ez y irányban exponenciális változásnak felel meg, tehát az amplitúdó az y koordinátával nő vagy csökken.

2.19 ábra: Kelvin-hullám egy y tengelyel párhuzamos partvonal mentén pozitív forgatás esetén. A hullám c_0 sebességgel halad, s amplitúdója a falra merőlegesen a Rossby-sugárnyi távol-ságon csökken e-ad részére.

Mivel az örökké növekvő eset nem valósulhat meg, pozitív Ω mellett a $+$, negatív mellett a $-$ előjelű megoldást kell választanunk. A hullám tehát az y irányban csillapodik, amplitúdója az $\exp(-y/R)$ szabály szerint Rossby-sugárnyi távol-ságon csökken e-ad részére. Hasonlóan vizsgálhatjuk az y tengelyen párhuzamos fal hatását a pozitív x térében elhelyezkedő folyadék mozgására. Azt találjuk, hogy akkor nincs x irányú mozgás, pozitív forgatás esetén a hullámmamplitúdó ismét a Rossby-hullámzámmal csökken exponenciálisan, de most az x irányban, a hullám c_0 sebességgel halad a negatív y értékek felé (2.19 ábra).

Általánosan az mondható, hogy a hullám úgy halad, hogy pozitív (negatív) forgatási irány esetén a fal a jobb (bal) oldalán helyezkedik el. A part menti nagyobb amplitúdó személyettesen úgy érthető, hogy a Coriolis-erő jobbra (balra) térít, s az ennek megfelelő oldalon halmozza fel a folyadéket. Az ilyen hullámot első leírójától Kelvin-hullámnak nevezzük. (W. Thomson, Lord Kelvin (1824-1907) termodinamikai kutatásai mellet azzá járult alapvető hidrodinamikai jelenségek megértéséhez, felismerte a Coriolis-erő fontosságát, s az árapály-hullám első leírását adta.)

Erős szereket és az árapály gyakran keltenek a part mentén Kelvin-hullámkat, ahol az átlagos mélység már csak néhányszor 10 m. Itt a Rossby-sugár 100 km körüli, s a hullám haladási sebessége néhányszor 10 m/s. Az északi irányra történő amplitúdócsökkenés jól megfigyelhető a Dover-i szorosban, ahol a francia partokon az árapály maximum néhol kétszer akkora mint az angol oldalon.

A fenti orientációs szabályból következik, hogy zárt medence peremén mentén a Kelvin-hullámok körbe haladhatnak. Pozitív forgatás esetén haladásuk az öramutató járásával ellentétes, azaz ciklonális jellegű (2.20 ábra). Az r sugarú medencéért $2\pi r/\sqrt{gH}$ idő alatt járja körül
2.20 ábra: Kelvin-hullám haladása egy kör alakú medencében pozitív forgatás esetén (felülnézet). A folytonos vonalak az azonos fázisú helyeket kötik össze, a szaggatottak pedig az azonos amplitúdó maximumokat. Az amplitúdó a medence közepén a legkisebb, s a perem felé növekszik.

a Kelvin-hullám. Ha a sugár éppen a (2.46) Rossby-sugárral egyezik meg, $r = R$, akkor az idő π/Ω, vagyis a forgatási idő fele. Ez a Rossby-sugár egy újabb érdekes tulajdonsága, s részben ennek tulajdonítható, hogy a Kelvin-hullámok szorosan kapcsolódnak az árapályhullámokhoz.

![Diagram](image)

2.21 ábra: Az árapályhullám haladása az Adriai-tenger északi medencéjében. A vonalak a dagály óránkénti helyzetét jelzik, a körüljárás ciklonális (pozitív). A medence közéltőleg egy 130 km széles, 400 km hosszú téglalap. Az átlagos Rossby-sugár 250 km, összemérhető a lineáris méreettel. A V pont Velencét jelzi.

A Hold tömegvonzása által okozott legfontosabb árapályhullám kétszer halad át a földön, hiszen dagály a Hold felé eső és az azzal ellentétes oldalon is keletkezik. Kontinensek hiányában ez a hullám nyugatról keletre vonulna végig az oceánokon 14. Mivel a kontinensek a haladási irányra lenyegében merőlegesen fekszenek, a tényileges árapályhullám, a tengerjárás sokkal bonyolultabb.

14A légkörbén valóban kialakul egy ilyen irányban mozgó nyomáshullám, melyet az árapály hatás kelt, átlagosan néhány hPa-os amplitudóval.
Ennek megértéséhez élszerű a félnapos periódussal ismétlődő dagályérkezést gerjesztőknek tekinteni, melyhez az áramlást a geometria és a forgatott rendszert jellemző sekélyfolyadék egyenletek együttesen határozzák meg. Mivel a Rossby-sugár nagysárgrendű lineáris mérettű medencékben a Kelvin-hullám körbefutásti ideje éppen fél nap körüli, nem meglepő, hogy a valódi árapályhullámok mozgását mutató lépek (1. 2.21 ábra) hasonlóak a 2.20 ábra sematikus rajzához. A hullámok az ún. amfidromikus pont körül haladnak, ahol a tengerszint gyakorlatilag nem változik.

A nyílt óceánon a Rossby-sugár ezer km nagysárgrendű, egy ilyen sugarú kör a legtöbb medence jelentős részét lefedi. A medencékben kialakul egy-két amfidromikus pont (2.22 ábra), s ezek körül haladnak az árapályhullámok, mégsebb váltón általában ciklonális körülnézet található.

2.22 ábra: A félnap periódusú árapályhullám mozgása a Világóceánon. A vonalak a dagály óránkénti helyzetét jelzik (a szaggattott vonalak azonos amplitudómáximumokhoz tartoznak). Keletre haladás csak a Csendes-óceán legmagasabb, déli medencéjében figyelhető meg, mindenütt másutt körkörű mozgások jellemzik a tengerjárást.

2.10 Nemlineáris felszínű hullámok, szolitonok

Erős gerjesztés hatására olyan felszínű hullámok alakulhatnak ki, melyek amplitudója nem hanyagolható el a teljes folyadékmélységhez képest. Az advektív derivált nemlineáris tagja ekkor lényeges szerepet játszik, s a jelenség már nem írható le lineáris egyenletekkel. Ennek következtében az ilyen nemlineáris hullámokra nem ígaz a szuperpozíció elve: két hullám összege nem megoldás.

A nemlineáris hullámok jellegzetes példái a szolitonok. Ezek a lineáris eset hullámsomagjaihoz hasonló lokalizációk és oldalak, felszínű kihullódások. Ha több szoliton szemben halad egymással, akkor azok kölcsönhatásba lépnek, alakjuk változik, de miután elváltak és eleghedten eltávolodtak, ismét visszanyerik eredeti formájukat és sebességüket. E tulajdonságuk az elemi részecskék szoros folyamatokban való részvételeire emlékeztet, s a szolitonok nevében ezért jelenik meg a részecskékre jellemző "on" végzódés.

A szolitonok magyarázatához túl kell lépni a sekélyfolyadék-dinamikán, a hidrosztatikus közelítéssel, s figyelembe kell venni az ahhoz adódó első korrekciókat. A létrejövő lineáris hullámok már gyengén diszperzálók, ezért a kis amplitudójú mozgásokból képzett hullámsomagok szétfolynak. Véges perturbációk esetén azonban az Euler-egyenlet nemlineáritását is figyelembe kell venni, s ez éppen a szétfolyás megakadályozását eredményezi. A részletes elméleti leírás
helyett, itt csak a szolitonok legfontosabb paramétereit adjuk meg (további tulajdonságokat mutat be a 9.3 fejezet).

Nem forgatót sekély folyadékban az x tengely mentén terjedő szoliton egy félszínű kihudorodás (2.23 ábra), melynek η_0 amplitudója véges, de kicsi a teljes vízmélységhez képest $\eta_0 \ll H$. A szoliton terjedési sebessége

$$c = c_0 \left(1 + \frac{\eta_0}{2H} \right) \approx \sqrt{g(H + \eta_0)},$$

ahol c_0 a lineáris hullámok \sqrt{gH} sebessége. A (2.66) összefüggés szerint a terjedési sebesség a maximális felszínű kihudorodás alatti teljes $h = H + \eta_0$ vízmélységhez tartozó lineáris hullámok sebessége. A szolitonok tehát *gyorsabban* az átlagos H folyadékmélységű közegben terjedő lineáris hullámoknál, sebességővévásznál és arányos amplitudójukkal.

![Diagram](image)

2.23 ábra: Szolitonok jellemző alakja és paraméterei. A szoliton nem szinuszhullám, a felületváltozás mindenütt kiemelkedés, η sehol nem vált előjelét.

A szoliton felszínéssze (hullámossza)

$$l = \frac{\sqrt{4H^2}}{3\eta_0}$$

Az l/H dimenziótlan felszínésség az η_0/H dimenziótlan amplitudó $-1/2$-edik hatványa. A szoliton jóval sezkesebb a folyadék mélységénel. A nagyobb amplitudójú szoliton keskenyebb, de gyorsabban halad, mint kisebb társa.

Ezek a tulajdonságok alapvetően különbözik a lineáris hullámoktól, melyekben sem a sebesség, sem a hullámossz nem függ az amplitudőtől. (A szoliton-tulajdonság a hang esetén azt jelentené, hogy a hang magassága függ a fokozott erősségétől.)

A szolitonok áthaladás utáni alakvisszanyerése jól látszik akkor is, ha az (x,y) síkon mozgó kétdimenziós szolitonok találkoznak. Ilyen esetben a szoliton lehet egy egyenes menti kihudorodásihullám, mely erre az egyenesre merőlegesen mozog. Két fordulat találkozó szoliton áthalad egymásra, s közben X alapot rajzol ki. Ez megfigyelhető tengerparti vizekben (2.24 ábra), de sekély to-, és folyópartok mentén is.

A természetben előforduló vízhuilmok közül a földrengés vagy vulkáni körés kellett, tsunami a legnagyobb energiájúak. Ált alában legfeljebb néhány m magas hullámok alakulnak ki, melyek a nyílt tengeren néhány 100 km hullámosszárnyak. Ezek tehát jogosan tekinthetők kis amplitudójú $c_0 = \sqrt{gH}$ sebességű hullámoknak. A mély vízben terjedési sebességük kb. 700 km/h, azaz egy nap alatt egész óceáni medenceát átszélnek. A sekély tengerparti vizekbe érve azonban lelassulnak, amplitudójuk megnő, ezzel a hullám nemlineráriussá válik, és szétfolyás a szoliton tulajdonság megakadályozza. Végül az egész sekély vizekben, ahol magassága már több tíz métert is elérhet, a hullám megtörik, s energiája felszabadul.

53
2.24 ábra: Két, eltérő irányban haladó szoliton találkozása tengerpart előtt [Ablowitz].

Forgatott közegekben is kialakulhatnak szolitonok, melyek a nemlineáris Rossby-hullámok lokalizált változatai. A Jupiter Vörös Foltjának egyik lehetséges magyarázata, hogy az nem más, mint egy hosszú életű Rossby-szoliton, egy nagy lokalizált örvényesség-csomag.

Végül megemlítsük, hogy számos más nemlineáris hullám is létezik. Közülük az egyik leggyakoribb a torlóhullám (bore), mely akkor alakul ki, ha egy folyadéknétegen nagy tömegű folyadék terül szét, ugrásszerű szintváltozással (2.25 ábra).

2.25 ábra: Torlóhullám (bore) mozgása.

A tenger napi árhulláma vezet felszíni bore kialakulására széles, lapos folyóvölgyekben. A megérkező dagályhullám néhány dm-es vízlepcsőt okoz, mely turbulens hatásással megindul a folyón fölé (2.26a ábra), a normális vízállásnak megfelelő gravitációs hullámok terjedési sebességénél gyorsabban. Valamivel kisebb skálán, minden, átbukással megtört hullám mozgó vízlepcsőt, bore-t hoz létre. A torlóhullám álló formája a hidraulikus ugrás (2.26b ábra).

Ezekkel itt tovább nem foglalkozunk, mert rétegzett közegbeli (belső) megjelenéseiket a 5.13 fejezet tárgyalja. Annak eredményeiből a felszíni változatok speciális esetként adódnak.
3. fejezet

A görbület hatása

A több száz vagy ezer km kiterjedésű környezeti áramlások a Föld felszíne körüli gömbhéjban zajlanak. Az ilyen geometriájú rendszeren a sekélyesség és az annak következtében mindig gyenge függőleges irányú áramlások azzal a következménnyel járnak, hogy függőleges irányban a Coriolis-erő nem lehet jelentős. Ezért a Föld bármely pontja körül a forgási szögsebesség vektora az ott érvényes vízszintes síkra vett vetülete csak elhanyagolhatóan kicsi járuléket ad a teljes Coriolis-erőhöz, s ezért a hídrominikai mozgáségenlet szempontjából csakis a függőleges szögsebesség komponens számít. Ha edényünk tetőszöges földrajzi koordinátájájú pontokhoz illesztjük (l. 3.1, 3.2 ábra), akkor a benne érvényes dinamikát a függőleges tengely körül forgatott sekély folyadékkra érvényes egyenletek írják le, csak 2Ω helyett mindenütt az

$$ f = 2\Omega \sin \varphi $$

mennyiséget, az ún. Coriolis-paramétert, vagy másnéven planetáris örvényességet kell használnunk. Itt ΩF a Föld forgási szögsebessége, φ pedig az edény középpontjának szélességi koordinátája (l. 3.1 ábra). Az f paraméter az Északi-sarkon a legnagyobb ($2\Omega F$), az Egyenlítő felé csökken, ott előjelet vált, s a Déli-sarkon a legkisebb ($-2\Omega F$).

Ha a vizsgált tartomány L vízszintes kiterjedése, azaz az edény mérete kicsi a Föld R_F sugárához képest, akkor a Coriolis-paraméter helyettesítése elhanyagolható, s elegendő az edény középpontjában kiértékelni. Korábbi eredményeink mind érvényben maradnak a

$$ 2\Omega \rightarrow f_0 = 2\Omega F \sin \varphi_0 $$

helyettesítéssel, ahol f_0 a planetáris örvényesség az edény φ_0 koordinátájú origójának megfelelő szélességen. Ennek értelmében a Rossby-szám és a Rossby-sugár

$$ Ro = \frac{U}{f_0 L} \quad \text{és} \quad R = \frac{\sqrt{gH}}{f_0} $$

Az f_0 paraméter szélességfüggésének megfelelően a geostrofikus áramlások erőssége az Egyenlítő felé haladva fokozatosan nő ugyanakkora kiváló ok, pl. felszíni egyenlőség mellett. Az ugyanakkora sebességhöz és sűkbeli kiterjedéshez tartozó Rossby-szám egyenlő lényegesen nagyobbá válik az Egyenlítő közelében. Ott tehát mindenféle értelmében veszti a geostrofikus egyensúly, hiszen az f planetáris örvényességből adódó Coriolis-erő eltűnik. Ennek fontos következménye, hogy ciklonok és anticiklonok az Egyenlítői övezetben nem létezhetnek, s ilyen légköri képződmények ott tényleg nem is figyelhetők meg.

Az f_0 paraméter szélességfüggésének egy másik jól megfigyelhető következménye a tehetetlenségi körmozgás $\omega_0 = f_0$ frekvenciája, mely a sarkoktól eltekintve fél napnál hosszabb periódusidőnek felel meg. A 1.14 ábra esetében a periódusidő 14 óra, f_0 helyi értékével pontos összhangban.
Amennyiben a vizsgált tartomány méréttét több száz km-esre kivánjuk kiterjeszteni, mely sok jelenség szempontjából elkerülhetetlen, akkor a planetáris örvényesség helyfüggésének legalábbis megfontosabb, lineáris részét meg kell tartanunk. Ilyenkor tehát a

$$2\Omega \rightarrow f_0 + \beta y$$

helyettesítést kell alkalmazni. Itt a β-paraméter a planetáris örvényesség változású gyorsasága a sarok felé történő elmozdulás következtetében. Tipikus értéke közepes szélességeken km-enként 10^{-8}/s.

A β-paraméter fontosságát a

$$Be \equiv \frac{\beta L}{|f_0|}$$

dimenzióttalan szám méri. Nagysága a közepes szélességeken az 1000 km-es skálán 0,1 körüli, azaz összemerhető a Rossby-számmal. Két áramlás akkor lehet hasonló, ha jellegzetes számaik között a Be dimenzióttalan β-paraméter is azonos.

A β-paraméter jelenléte új jelenségeket eredményez a

$$q = \frac{f_0 + \beta y + \zeta}{h}$$

potenciális örvényesség megmaradásával kapcsolatosan.

Már a geostrofikus határesetben, amikor ζ elhangzolható f_0 mellett, új vonás, hogy az áramlás nem az állandó folyadékmélységű ($h =$ konstans) vonalak, hanem az $(f_0 + \beta y)/h$ mennyiség kontúrsonalai mentén történik. Ha a folyadék sebessége több mint a f_0/β áramlás, akkor planetáris örvényességének is csökkenne kell, ami a mozgás északi-északi irányú elkanyarodásához vezet. Ez a gondolatmenettel értethető meg az áramlások irányváltoztatása dombok által körülölelve a teljes hatásköre (3,6 ábra) értéktől közelebbi irányú áramlást. Ugyanebből a megmaradásból következik az is, hogy ha a folyadékleme feláramló tartományba kerül, ahol h nő, akkor planetáris örvényességének is nőnie kell, tehát az északi felének északi irányba, általánosan a közélebbi sarok irányába el kell mozgulnia. Hasonlóan, leáramlóhoz az Egyenlítő felé irányuló elmozdulás tartozik. Ez az ún. Sverdrup-féle összefüggés fontos szerepet játszik az óceáni áramlások kezésében.

Kvázi geostrofikus mozgás esetén a ζ örvényesség nem hanyagolható el a planetáris hatékonyságban, bár amnál jóval kisebb. Fennáll a lehetősége annak, hogy a planetáris örvényesség helyfüggésből adódó βy járulékát a ζ örvényesség mindig kompenzálja, s Rossby-hullámok alakulnak ki. Terjedési sebességük arányos az adott szélességen érvényes β-paraméterrel. A β-hatás ugyanaz a szerepet játsza, mint a dombok hatása az állandó forgatási szögsebességű esetben, de a valóságos légköri Rossby-hullámok kialakulásában jóval fontosabb a szerepe. Ezeket a Rossby-hullámokat planetáris hullámoknak szokás nevezni, ugyanis gyakran néhány hullámhosszkal körbejövők a Földet. Jól megfigyelhetők meteorológiai térképeken mint a ciklonok és anticiklonok közötti kanyargó hullámzás (3,3, 3,4 ábra), s rendelkeznek azzal a fontos tulajdonsággal, hogy akármelyik szélességi kör mentén is haladnak, azt ugyanannyi idő alatt kerülnek meg. A planetáris-hullámok nagy méretük és lassú (≈ 10 m/s sebességű) mozgásuk miatt a méréskeltő időjárási rendszerek elsődleges meghatározói.

A földi léggörék a szélességi körök mentén fújó, ún. zonális szelek szempontjából három különböző övezetre oszlik (3,5 ábra). A méréskelt időjáratokra épülnek a nem-ösztályok által kialakult természetes jelenségek jellegzetes időjárási rendszerek. Ez a megszorítás kelet-keleti irányú áramlásra nem érvényes (3,7 ábra). Ugyanez az erős aszimetria megnatkozik a
domborzattal való kölcsönhatásban is. A nyugatról érkező áramlás bármilyen, rá merőlegesen futó domborzati akadályon áthaladva kanyargó mozgásával, meanderezővé válik (3.8a,b ábra). Keletről érkező társa viszont már az akadály előtt kissé irányt változtat, s át tud haladni úgy az akadályon, hogy mögötte mozgása ismét szélességi kör menti, azaz meanderezéstől mentes (3.9a,b ábra). A Keletről irányuló áramlásoknak ez a meanderező jellege jól megfigyelhető a Golf-áramlatban, amint a Haterras-foknál elhagyja az amerikai kontinentst (2. ábra), vagy a magaslégréssben állandóan jelenlévő, s igen erős nyugati szeleket hordozó oránkacsatorna, a jetstream pedigjén (3.10 ábra).

Mindezekből következik, hogy a nyugati szél erős Rossby-hullámokat keltészt-déli irányú hegyvonulatok fölött és mögött (3.11 ábra). A mérsékeltői időjárási szempontjából legfontosabb Rossby-hullám gyerjezett hegyhelyek: a Sziklás-hegység, az Andok és a Himalája. A gyerjezett hullámok amplitudója annál nagyobb, minél közelebb van a hegyvonulat hullámhossza a stacionárius Rossby-hullámok kritikus \(\lambda_c \) hullámhosszához. A kritikus hullámhosszon rezonancia következik be (3.12 ábra), s a hőtáramlás energiájának nagy része átmegy a gyerjezett Rossby-hullámokéba.

A \(\beta \)-hatás magyarázza azt is, hogy erős peremáramlatok mindig az óceáni medencék nyugati partvonalai mentén alakulnak ki. A \(\beta \)-hatás és a kváziösztrofikus jelleg következtében a folyadék amíg csak lehet, szélességi körök mentén halad, s utána hirtelen egy véges vastagságú sában kanyarodik el (egy keletről érkező áramlás ezt megteheti), miközben megőrzi teljes örönmennyiségét, s áramlási sebessége jelentősen megv. Ennek a sávuk a vastagsága néhány sor 10 km-nek adódik, összhangban a Golf-áramlat szélességével (3.13 ábra).

A parttól elfelé futó áramlás szempontjából a perem akadályként jelenik meg, s az áramlás meanderező lesz (3.14 ábra). Összességében egy óceáni medence Egyenlítőhöz közei peremén sima elkanyarodást várnunk, a sark felé futó peremáramlat kialakulását, mely a partvonalattal elvála erős meanderezéshez kezd (3.15 ábra).

A \(\beta \)-hatás az Egyenlítő közvetlen közelében is érvényesül. Léteznek a Kelvin-, Poincaré-, és Rossby-hullámok megfelelők, s ezek egymást döskztetnek spektruma jelentik meg (10.1 ábra). Az ilyen egyenlítői hullámok, visszaerődülésük és egymásba alakulásuk fontos szerepet játszik az El Nino-jelen ségkörben.

3.1 Földrajzi koordináták, a lokális rendszer

A nagyskalájú környezeti áramlások teljesebb megértése érdekében a sekély folyadék közeli test egy gömbhajra kell kiterveztetnünk.

A Föld felszínén a hagyományos földrajzi koordinátákat használjuk (3.1 ábra). A szélességet, azaz az Egyenlítővel bezárt szögöt \(\varphi \)-vel jelöljük. A \(\varphi = \pi / 2 \) ill., \(\varphi = - \pi / 2 \) értékek az Északi-, ill. Déli-sarknak felelnek meg. A földrajzi hosszúságot, azaz a Föld tengelye körüli elforgatás szöge \(\lambda \). Ez megegyezés szerint Greenwich-nél veszi fel 0 értékét (\(\lambda = \pm \pi \) a dátumválasztó vonal). A szögek jelölése tehát eltér attól, amit gömbi koordinátarendszerekben szokás használni.

A Föld, gömbnek tekintett felszínén definiálhatunk távolságot jelentő koordinátákat is. Hagyományosan

\[
x \equiv (R_F \cos \varphi) \lambda \quad (3.1)
\]

jelöli a kelet-nyugati,
\[
y \equiv R_F \varphi \quad (3.2)
\]

pedig az észak-déli irányban mért helykoordinátákat, ahol \(R_F \) a Föld sugara.

Tekintsünk a Föld sugaránál képest kisíny \(L \ll R_F \) vízszintes méretű folyadékéteget. Bármely \((\varphi_0, \lambda_0) \) földrajzi hely körül felvehetünk egy jobbodrástú derékszögű koordinátarendszer, melynek \((x, y)\) súlya az érintősként felszíkn, \(y \)-tengelye a közélebb pólus irányába mutat, és a \(z \) koordinátája a helyi függőleges irányban nő. Az \((x, y, z)\) koordináták az \((x_0 \equiv (R_F \cos \varphi_0) \lambda_0, y_0 \equiv R_F \varphi_0, z_0)\) helyzetű origótól mérik a távolságot. Ebben a lokális rendszerben írjuk le az \(L \ll R_F \)
3.1 ábra: A földrajzi koordináták. \(\varphi \) a szélességet, \(\lambda \) a hosszúságot jelöli.

Vízszintes kiterjedésű és \(H \ll L \) mélységű sekély folyadék áramlásait (3.2 ábra). Ezzel összhangban, az \(\mathbf{u} = (u, v, w) \) sebesség \(u \) komponense a szélességi körökkel párhuzamos (az északi féltékő felére, a dél nyugatra nő), \(v \) pedig az északi-déli irányú áramlás sebessége (mely akkor pozitív, ha a közlekedő sarok felé mutat) a Föld érintőskjában. A függőleges irányú sebesség \(w \).

3.2 ábra: A lokális rendszer és a forgási szögsebességvektor komponensei a két féltékő

Új vonás az, hogy a Föld forgási szögsebességvektorának a lokális rendszerben nincs \(z \), hanem \(y \) irányú komponense is van (3.2):

\[
\Omega_F = (\Omega_x \equiv 0, \Omega_y \equiv \pm \Omega_F \cos \varphi, \Omega_z \equiv \Omega_F \sin \varphi).
\]

Itt \(\Omega_F \) a Föld forgási szögsebességének (1.4)-vel megadott nagysága. Az \(\Omega_y \)-ban fellépő negatív előjel a déli féltékőre vonatkozik, ahol a forgási szögsebesség vízszintes komponense az Egyenlítő felé, azaz negatív \(y \) irányba mutat. A \(-2\Omega \times \mathbf{v} \) Coriolis-gyorsulás komponensei ezért \((-2\Omega_yw + 2\Omega_xv, -2\Omega_zu, 2\Omega_yu)\). Mely folyadékőrtégekben az \(\Omega_y \)-nal arányos új tagok jelentősek lennének, s ezért ott olyan típusú mozgás is kialakulhat, mely nem lehetséges egy függőleges tengely körül forgatott edényben. Érdemes módon azonban a \(H \ll L \) sekélyfolyadék közelítésben nem ez a helyzet. Ekkor ugyanis a típusú \(W \) függőleges sebesség legfeljebb \(UH/L \ll U \), s ezért az \(x \) irányú Coriolis-gyorsulásban az \(\Omega_y \)-nal arányos tag sokkal kisebb az \(\Omega_z \)-vel arányosnál, ill. a nyomás erőből adódóan A Coriolis-gyorsulás függőleges \((z) \) komponense \(2\Omega_yu \), mely \(\Omega_F U \) nagyságrendű. Ez a \(p' \) dinamikai nyomásból származó \((1/\rho_0)\partial p'/\partial z \) gyorsuláshoz képest kicsi, hiszen az utóbbi nagyságrendje (1.24) szerint \(\Omega_F UL/H \gg \Omega_F U \). Az \(\Omega_y \)-nal arányos tagok tehát mindenütt elhanyagolhatók, s a forgási szögsebességvektornak csak az \(\Omega_z \) függőleges komponense játszik szerepet!
A lokális rendszerbeli sekélyfolyadék egyenletek tehát *ekvivalensek* a függőleges tengely körüli forgatott edénybeli sekélyfolyadék egyenletekkel, ha 2Ω helyett mindenütt az

$$f \equiv 2\Omega_x = 2\Omega F \sin \varphi$$

mennyiséget, az ún. *Coriolis-paraméter* írjuk. Edényünköt most már nemcsak a sarkokra képzelhetjük, hanem tetszőleges földrajzi koordinátájú pontba is (l. 3.2 ábra).

A sekélyfolyadék egyenletek a lokális rendszerben

$$\frac{du}{dt} = -f n \times u - g \text{grad}\eta,$$

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hu)}{\partial y} = 0.$$

alakúak, ahol $x = (R_F \cos \varphi_0) (\lambda - \lambda_0)$ és $y = \pm R_F (\varphi - \varphi_0)$. A negatív előjel továbbra is a déli felgombra vonatkozik. A (3.4) Coriolis-paraméter

$$f = 2\Omega F \sin (\varphi_0 \pm y/R_F).$$

Mivel f a folyadék örvényességlevel a teljes örvényességet adja, f-et szokás *planetáris örvényesség*nek is nevezni. A planetáris örvényesség függ az y koordinátától. Ez olyan forgatásnak felel meg, melynek erőssége annál nagyobb, minél közelebb vagyunk valamelyik sarkokhoz. Úgy is szokás mondani, hogy a Föld felszínén kialakuló áramlások differenciális rotációinak vannak kitéve. Ezt a tulajdonságot laboratóriumban lehetetlen közvetlenül megvalósítani, mert nem tudunk úgy forgatni egy edényt, hogy a szögsebesség helyfüggő legyen.

3.2 Az f_0-sik közélítés

Az L lineáris méret kicsinysége a Föld sugarához képest azt követeli meg, hogy a Coriolis-paramétert azon a φ_0 referencia szélességen értékeljük ki, mely a koordinátarendszer origójának, ill. x tengelyének felel meg. Ez az

$$f \equiv f_0 = 2\Omega F \sin \varphi_0 = \text{állandó}$$

választásnak felel meg. A planetáris örvényesség ebben az ún. f_0-sik közélítésben az egész vízszint tartományban állandó. Más tartományhoz természetesen más φ_0, s így más f_0 tartozik. Az Északi-sarkan $f_0 = 2\Omega F$, az alacsonyabb szélességek felé haladva csökken, az Egyenlítőnél f_0 előjelet vált, s egyre negatívabb értékeken keresztül jut el a Déli-sarkhoz tartozó $f_0 = -2\Omega F$-hoz.

Adott f_0-sikon, korábbi eredményeink a

$$2\Omega \rightarrow f_0 = 2\Omega F \sin \varphi_0$$

helyettesítéssel érvényesek. A Rossby-szám definíciója mostantól

$$Ro = \frac{U}{|f_0|L},$$

azaz a földrajzi szélességeknél megfelelő Coriolis-paraméterrel számoljuk. Ez közepes szélességeken legféljebb kétszerese a sarkainak. A 45 fokos szélességen pl. (Magyarország a 46 és 48 fokos
szélességi körök között felszínre) \(f_0 = \sqrt{2} \Omega_F = 1,03 \cdot 10^{-4} \) 1/s. Ennek megfelelően a 1.1 táblázat Rossby-szám értékei a (3.10) definició szerint mintegy 1,4-szer nagyobbak. Az Egyenlítő felé közlekedve \(Ro \) értéke minden határon túl nő, ezért a \(Ro \ll 1 \) feltétel ott sohasem teljesülhet, a geosztrófikus és kvízigeosztrófikus közelítés ott nem alkalmazható.

Geosztrófikus egyensúlyi áramlásra

\[
\begin{align*}
 u_y &= -\frac{g}{f_0} \frac{\partial \eta}{\partial y}, \\
 v_y &= \frac{g}{f_0} \frac{\partial \eta}{\partial x},
\end{align*}
\]

(3.11)

Ugyanakkora felszínű vagy nyomásbeli különbség tehát erősebb geosztrófikus áramlásokat hoz létre alacsonyabb szélességeken mint magasabbakon. Ez a tendencia azonban csak addig figyelhető meg, amíg a Rossby-szám egyenlő kisebbnek tekinthető. Az Egyenlítő közvetlen közelében nyilvánvalóan nem ez a helyzet, ott nem alakulhat ki geosztrófikus egyensúly, hiszen \(f_0 \rightarrow 0 \), a Coriolis-erő eltűnik, s így nem képes a nyomású erő egyensúlyozására. Ennek fontos következménye, hogy az Egyenlítő környékén nem létezhetnek ciklonális és anticiklonális áramlások, teljes egyezésben a tapasztalattal.

A tehetetlenségi körmozgás periódusideje

\[
T = \frac{2\pi}{f_0} = \frac{\pi}{\Omega_F \sin |\varphi_0|} = \frac{1/2 \ \text{nap}}{\sin |\varphi_0|} \quad (3.12)
\]

(mely az adott szélességen a Foucault-inga körülfordulási idejének a fele). A 1.14 ábra a Balti-tengerben mutatja a tehetetlenségi körmozgást, melynek periódusideje mintegy 14 óra. Ez megfelel a (3.12) összefüggésnek, figyelembe véve hogy a szélesség 58 fok.

A Rossby-sugár az \(f_0 \)-közelítésben

\[
R = \frac{\sqrt{gH}}{|f_0|} \quad (3.13)
\]

Értéke az Egyenlítő felé közlekedve nő, azaz a szabad felszín hatása ott egyre kivételes érvényesül. Közepes szélességeken a fenti képlettel számolt legközelem Rossby-sugár 3200 km, az oceán 2000 km. A tehetetlenségi-gravitációs hullámok diszperziós relácójára

\[
\omega_0^2 = f_0^2 + gH k_x^2 = f_0^2 (1 + (R k_x)^2),
\]

(3.14)

a topografikus Rossby-hullámoké pedig

\[
\omega_0 = \frac{f_0 \gamma}{H} \frac{k_x}{k^2 + R^2}.
\]

(3.15)

3.3 A \(\beta \)-sík közelítés

A \(\beta \)-sík közelítés az \(f_0 \)-sík közelítés kiterjesztése, mely figyelembe veszi a Coriolis-paraméternek a Föld görbületéből adódó legfontosabb helyfüggő járulékát. Ez számos új jelenség leírását teszi lehetővé. Rossby nevéhez fűződik annak felismerése is, hogy a lokális rendszerbeli egyenletek érvényben maradnak akkor is, ha a Coriolis-paraméterben figyelembe vesszük a vezető rendű, lineáris helyfüggést, azaz ha \(f \)-et úgy írjuk, mint

\[
f = f(y) \equiv f_0 + \beta y.
\]

(3.16)
Itt $f_0 \equiv f(y_0)$ a Coriolis-paraméter a lokális rendszer origójában, és

$$\beta = \pm \frac{1}{R_F} \frac{df}{d\varphi}_{|\varphi = \varphi_0} = \pm \frac{2\Omega_F}{R_F} \cos \varphi_0 = \text{állandó}$$

(3.17)

a Coriolis-paraméter y szerinti deriváltja ugyanott. Az északi térén a β-paraméter pozitív, a délén viszont negatív, az Egyenlítőn áthaladva hírtelen előjelet vált. Ez a közletés azt jelenti, hogy figyelembe vesszük a Föld görbületét, de nem a koordinátarendszer megőrítésével.

A lineáris tagnál akkor szabad megállnunk, ha $y/R_F \ll 1$. Ez azt jelenti, hogy a vizsgált tartomány L lineáris mérete kicsi a Föld sugarához képest, tehát konzisztens a lokális rendszer használatával. Az Egyenlítő közvetlen környezetét kivéve ez azt is jelenti, hogy $\beta L \ll f_0$. Konkrét példaként tekintsük a 45-ös szélességet, ahol $f_0 \approx 10^{-1}$ 1/s, és $\beta = 1,6 \cdot 10^{-11}$ 1/(m s). A kiterjedésnek $L = y_{\text{max}} = 500$km-t véve, βL csak 8 százaléka f_0-nak. A β-sik közletés tehát a közepes szélességeken mintegy 1000km átmérőjű tartományokra érvényes. Fontos hangsúlyozni, hogy a sarkok közében a lineáris közletés nem jogos, hiszen $\pi/2$-nél a színuszfüggvény négyzetesen változik. Ugyanakkor azonban az Egyenlítő körül alkalmazható a β-sik közletés (l. 10.2 fejezet).

A β paraméter fontosságának egy lehetséges dimenziótlan mérőszáma a

$$Be = \frac{\beta L}{f_0} = \frac{L}{R_F} \text{ctg}|\varphi_0|$$

(3.18)

kifejezés. Megadja, hogy a teljes lineáris méretben hányszorosa a Coriolis-paraméter változása az origóbeli Coriolis-paraméternek:

$$Be = \frac{\text{a Coriolis-paraméter változása}}{\text{Coriolis-paraméter}}$$

(3.19)

A Be dimenziótlan β-paraméter (3.18) alakjából leolvasható, hogy értéke a Föld sugarához képest kis kiterjedésű tartományokban, a sarkoktól távol kicsi: $Be \ll 1$.

A lokális seleyfolyadék rendszer a β-sik közletésben tehát leírható korábbi egyenleteinkkel, ha azokban a

$$2\Omega \to f = f(y) \equiv f_0 + \beta y$$

(3.20)

helyettesítést elvégezzük. A forgatás szögsebessége lineárisan helyüggővé válik a Föld felszínén érzékelhető differenciális rotáció miatt. Figyelünk kell azonban arra, hogy az olyan eredmények, melyekben kihasználtuk Ω állandóságát, nem maradnak érvényben.

A (3.5) seleyfolyadék egyenletek dimenziótlan alakja

$$\frac{d\mathbf{u}}{dt} = \mp \frac{1}{Ro}(1 + Be \, y) \mathbf{n} \times \mathbf{u} - \frac{1}{Fr^2} \text{grad} \eta,$$

(3.21)

ahol a Rossby-számot (3.10), a Froude-számot pedig (1.27) adja. Itt tehát megjelenik a dimenziótlan β-paraméter új karakterisztikus számiként. Két áramlás a β-sikon akkor hasonló, ha mindhárom dimenziótlan számuk, Ro, Fr és Be is azonos.

Könnyen ellenőrizhető, hogy a potenciális érvényesség megmaradása a (9.1)-(9.3) seleyfolyadék egyenletben is érvényes a (3.16) helyüggő forgatási szögsebesség mellett: a

$$q = \frac{\zeta + f(y)}{h} H$$

(3.22)
mennyiség állandó a folyadékrezek születésémenes mozgása során (l. (2.22)). Fontos új tulajdonság, hogy most már a ζ örvényességének nem kell feltétlenül megváltoznia mélyebb folyadékrezbe kerüléskor, hiszen a számláló növekedhet $f(y)$-non keresztül, azaz az északra történő elmozdulás miatt is.

A gyorsan forgatott esetben, amikor ζ sokkal kisebb mint $f(y)$, stacionáris áramlás alakulhat ki, tehát $\partial/\partial t = 0$. Ekkor fenn kell állnia, hogy

$$ u_g \frac{\partial}{\partial x} \left(\frac{f(y)}{h} \right) + v_g \frac{\partial}{\partial y} \left(\frac{f(y)}{h} \right) = 0. \quad (3.23) $$

Ez a (2.29) feltétel általánosítása a β-sikra. A geosztrokús áramlás az $f(y)/h$ mennyiség szintvonalai mentén halad.

A felszíni alakulat kifejezve a geosztrokús áramlási sebesség (2.24) általánosításaként:

$$ u_g = -\frac{g}{f(y)} \frac{\partial \eta}{\partial y}, \quad v_g = \frac{g}{f(y)} \frac{\partial \eta}{\partial x} \quad (3.24) $$

Forgásszimmetrikus kidudorodás vagy behoradás esetén a sebesség nagysága nem állandó, hanem az Egyenlítő felé eső részei leni gyorsabban.

3.4 A Sverdrup-összefüggés

A geosztrokús áramlás oszlopos szerkezetű, hiszen a sebességi komponensek függőtlenek a z koordinátától. Ugyanakkor azonban nem kétdimenziós az erős forgatás ellenére sem: létrejön egy függőleges irányú w_g sebességű áramlás is. A (3.24) egyenlet szerint fennáll ugyanis, hogy

$$ \frac{\partial}{\partial x} (f(y)u_g) + \frac{\partial}{\partial y} (f(y)v_g) = 0, \quad (3.25) $$

melyből a háromdimenziós divergenciamentesség, azaz $\text{div} u = -\partial w_g/\partial z$ miatt

$$ u_g \frac{\partial f(y)}{\partial x} + v_g \frac{\partial f(y)}{\partial y} = f(y) \frac{\partial w_g}{\partial z}. \quad (3.26) $$

Mivel f nem függ x-től, y szerinti deriváltja viszont β,

$$ \beta v_g = f(y) \frac{\partial w_g}{\partial z}, \quad (3.27) $$

vagy

$$ \text{div} u = -\frac{\beta v_g}{f(y)}. \quad (3.28) $$

Ez az ún. Sverdrup-féle összefüggés (H.U. Sverdrup, 1888-1957, norvég oceanográfus, a lassú óceáni mozgások első leírója), mely azt mondja ki, hogy a β-hatás miatt a geosztrokús egyensúlyban gyenge fél- vagy leáramlások alakulhatak ki. A folyadékoszlopek függőleges megnyúlás rátája, $\partial w_g/\partial z$, az észak-déli sebességgel arányos, de függőtlen a kelet-nyugattól. A sekélyfolyadék tulajdonság szerint nem függ a z koordinátától sem. Leáramlás esetén $w_g < 0$, $\partial w_g/\partial z < 0$, s a többi geosztrokús sebesség mindig az Egyenlítő felé irányul ($v_g < 0$), hiszen $f(y)/\beta$ mindkét feltétlen pozitív.

Ugyanez következik a potenciális örvényesség megharagúdásának (3.23) alakjából is. Az eredmény szemléletes magyarázza a megharagúdási téttel fennyében az, hogy ha egy folyadékoszlop magassága változik, akkor planetáris örvényességének is változnia kell, mivel abban a folyadék ζ örvényessége most nem lényeges, az oszlopnak észak-déli irányban el kell mozdulnia.

64
A Sverdrup-összeefüggésben szereplő fel-le áramlások gyengék, így (3.27) jó közelítéssel írható mint
\[\beta v_g = f_0 \frac{\partial w_g}{\partial z}. \] (3.29)
A \(\partial w_g/\partial z \) megnyúlású ráta nagyságrendje \(U/L \) (ugyanakkora mint \(\text{div} \, \mathbf{u}_g \cdot \mathbf{e} \)), így (3.29) dimenzióttalan kifejezése
\[\frac{\partial w_g}{\partial z} = Be \, v_g, \] (3.30)
ahol \(Be \) a (3.18) dimenzióttalan \(\beta \)-paraméter. Láttuk, hogy a \(\beta \)-sik közelítés érvényességi feltétele az, hogy \(Be \ll 1 \), ezért a dimenzióttalan megnyúlású ráta sokkal kisebb mint a geostrofikus sebesség.

3.5 Planetáris hullámok

Konstans \(H \) folyadékmélység és elhanyagolható felszíni mozgás esetén a (3.22) potenciális örvényesség
\[q = f_0 + \zeta + \beta y, \] (3.31)
azaz ugyanolyan alakú kifejezés, mint az \(y \) irányban enyhén döntött aljú forgatott edénybeli (2.33). Ez azt mutatja, hogy Rossby-hullámok konstans mélység mellett is kialakulhatnak \(\text{kizárólag} \) a differenciális rotáció, vagyis a \(\beta \)-hatás következtében. A természetben előforduló legfontosabb Rossby-hullámok esetén ténylegesen ez a helyzet. Tulajdonságai azonban leképezhetők a forgatott edénybeliekére a
\[\frac{20y}{H} \leftrightarrow \beta \] (3.32)
megfeleltetéssel. Ez a reláció teszi lehetővé a környezeti áramlásokban megfigyelt Rossby-hullámok laboratóriumi modellezését (2.16 ábra).

Ha a \(\beta \)-hatással lejtős aljzat párosul, mely a sarok felé \(\gamma \) méredékséggel emelkedik, akkor a potenciális örvényesség
\[\zeta + f_0 + \beta y \frac{H}{H - \gamma y} \approx (f_0 + \zeta + \beta y)(1 + \frac{\gamma}{H} y) \approx f_0 + \zeta + (\beta + f_0 \frac{\gamma}{H} y). \] (3.33)
Ilyen esetben a dimenzióttalan \(\beta \)-a paraméter általános alakja:
\[Be \equiv \beta \frac{L}{f_0} + \gamma \frac{L}{H}. \] (3.34)

A hidrodinamikai hasonlóság feltétele a \(Be \) paraméter azonos értéke. Az áramlás jellege tehát független attól, hogy kizárólag lejtős aljzat, vagy \(\beta \)-hatás, vagy mindkettő jelenléteben alakul ki. Mivel a Földön nem található nagyskalájú, egyenletesen emelkedő domborzat, a valóságos áramlásokban \(\gamma \) elhanyagolható\footnote{Laboratóriumi kísérletekben viszont a \(\gamma L / H \) kombinációt tekintjük dimenzióttal \(\beta \)-paraméternek.}.

A légköri kialakuló Rossby-hullámok a leghosszabb és egyben leglassabb légköri hullámok. Gyakorlati fontosságuk abból adódik, hogy alapvetően ezek határozzák meg az időjárás alakulását. Mivel hullámhosszuk sokszor összembréhető a Föld sugarával, azaz néhány hullámhosszal
körbefoglalják a Földet, *planetáris* hullámoknak is nevezik őket. Diszperziós relációjuk

\[\omega_0 = -\beta \frac{k_x}{k^2 + R^{-2}} = \frac{2\Omega_F \cos \phi_0}{R_F} \frac{k_x}{k^2 + R^{-2}}, \]

ahol \(R \) a (3.13) szerinti Rossby-sugár. A hullámok \(x \)-irányú sebessége

\[c_x = -\beta \frac{1}{k^2 + R^{-2}}. \]

Mivel \(c_x/\beta < 0 \), a planetáris hullámok álló közegben *mindkét felében nyugatra* haladnak (a déli felöltőn a nyugatra haladás növekvő \(x \)-értékeknek felel meg, de ott \(\beta \) is negatív). Ez a kitüntetett irány ismét az időfüggő szimmetria sűrűlésének következménye.

A planetáris hullámok szinte minden meteorológiai térképen megfigyelhetők, mint a ciklonok és anticiklonok között kanyargó áramlások (3.3 ábra). Ezek természetesen általában nem szimmetriáként megadható hullámok, hanem az itt leírtaknál bonyolultabb, nemlineáris változatok, melyek nagy kiterjedésük miatt esetleg már a \(\beta \)-sik közelítés érvényességi körön is kívül esnek.

A $k_x = 1/(1000 \text{ km})$ hullámszámú planetáris hullám sebessége a 45 fokos szélességű körön $|c_x| = 16 \text{ m/s} \approx 60 \text{ km/h}$. Periodusideje 4,5 nap. Mivel a hullámszám négyzet kb. tízszor nagyobb a légköri R^{-2}-nél, a becsüskésen a Rossby-sugarrat el lehet hanyagolni. A szélességi kör kerülete mintegy 30000 km, azt a hullám kb. 20 nap alatt kerüli meg.

A kelet-nyugati irányban mozgó ($k_y = 0$) planetáris hullámok érdekes tulajdonsága, hogy az Egyenlítő felé közeledve c_x sebességük nő, de éppen olyan mértékben, mint a középvonalukhoz tartozó szélességi kör kerülete. Az adott k_x hullámszámú planetáris hullámok a Földet azonos idő alatt kerülik meg. Ez az idő a $|\beta| = 2\Omega_F \cos \phi_0/R_F$ összefüggés felhasználásával

$$T = \frac{2\pi R_F \cos \phi_0}{|c_x|} = \frac{\pi}{\Omega_F} \left[(R_F k_x)^2 + (R_F / R)^2 \right],$$

valóban független a ϕ_0 szélességtől. A szinkronban maradási tulajdonság a planetáris hullámok jelenségének erőteljességét mutatja, és az ilyen hullámok gyakorlati előfordulását biztosítja.

A kelet-nyugati irányban haladó ($k_y = 0$) planetáris hullám csoportsebessége is szélességi körrel párhuzamos, nagysága

$$c^* = \frac{\partial \omega_0}{\partial k_x} = \beta \frac{k_x^2 - R^{-2}}{(k_x^2 + R^{-2})^2}.$$

A Rossby-sugár reciprokánál nagyobb hullámszámú planetáris hullám energiája tehát keletek halad, míg a kisebb hullámszámúak nyugatra. A diszperzív tulajdonság fontos következménye, hogy egy falon visszeverődő hullám hosszúságának meg kell változnia. Másfent ugyanis nem változhatna meg csoportsebességének előjele (húsz frekvenciája nem változik). Az észak-déli falra beeső és visszavert hullám k_{be} ill. k_{bi} hullámszámai tehát kielégítik az $\omega_0(k_{be}) = \omega_0(k_{bi})$ feltételeit (l. 3.4 ábra). Ellenkező előjelű csoportsebesség csak akkor tartozhat hozzájuk, ha R^{-1}-től való eltérésük is ellenkező előjelű. Egy nyugati óceáni peremre energiát hozzó planetáris hullám hosszú hullam, melyre $k_{be} < R^{-1}$, a visszeverődés után rövid hullámhosszú válík: $k_{bi} > R^{-1}$. A nyugati peremvidék tehát a rövid hullámhosszú zavarok forrásának tekinthető. Az élesen eltérő frekvenciák miatt Rossby-hullám nem alakulhat át Poincaré-hullámba, az azonban megtörténhet, hogy a nyugati peremvidékre érkező Rossby-hullám hosszú hullámhosszú, tehát lassú Kelvin-hullámat kelt a partvonal mentén.

![3.4 ábra: Planetáris hullámok diszperziós relációjából leolvasható, hogy észak-déli partvonal- lattal ütközve a beeső és visszavert hullám csoportsebessége csak akkor lehet ellenkező előjelű, ha a bejövő és kimenő hullámszámok a R^{-1} Rossby-hullámszám különböző oldalára esnek.](image)

3.6 Az általános légkörzés zonális áramlásai

A Föld gömbalakjának következménye a kialakuló általános légkörzés is, melyben szélességi körök menti, ún. zonális áramlások figyelhetők meg mind a Föld felszínén, mind a magasabb légrétegekben.
A légkör mozgását a Napból érkező energia hajtja. A hősugárzás következtében az Egyenlítő környékén a felnelegített levegő felénelkedik, a magasban, a 10–12 km-es szinten a sarkok felé fordul, helyére pedig a felszínen húvósebb levegő érkezik. Ha a Föld a valóságcsél sokkal lassabban forogna tengelye körül, akkor a magas légkörű áramlás csak a sarkoknál kénytetszülne lez állásra. Ilyen egyevél légkörzés figyelhető meg a Vénusz légkörében. A Föld sokkal gyorsabb forgása a helyzetet jóval bonyolultabbá teszi.

Az egyenlítői levegő, többek között a mérsékelt égői Rossby-hullámok és ciklonok, anticiklonok miatt a magasban csak kb. a 30-as szélességekig jut, ahol lezúz. Ez okozza a Bak- és Rak-térőtől körüli száraz éghajlatot, és az óceáni szélesendes övezetet. A lezúzott levegő egy része innét a felszínén az Egyenlítő felé fordul, amit a Coriolis-erő az északi feltekén jobbra, a déli balra térít el. Mindkét hatás arra vezet, hogy a passzát övezetben keleti, azaz keletről fújó, zonális szelek uralkodnak.

![3.5 ábra: A Földön uralkodó zonális szelek sematikus rajza.](image)

A 30-as szélességeken lezúzott levegő másik része a felszínén a sarkok felé áramlik. Rá ellenkező előjelű a Coriolis-hatás, s így a mérsékelt éghajlati évben a nyugati zonális szelek a jellemzők, természetesen hosszú idejű, pl. éves átlagokban.

A mérsékelt égői levegő a 60-as szélességek fölötte találkozik a sarkok felől a felszínén az Egyenlítő felé áramló hídege levegővel. A két tartományt elválasztó gőrbe az ún. poláris front. Alakja, bármelyik magassági szinten nézhetik is, időben változik, hullámzó gőrbe (3.5 ábra). A poláris front alakját rendszerint egy ott jelenlevő planetáris hullám határozza meg. Ez tehát a légkörű Rossby-hullámok egy gyakori előfordulási helye is.

A sarki övezetben lezúzott áramlások uralkodnak. Az Egyenlítő felé haladó mozgás a Coriolis-féle eltérítés miatt a felszínén ismét keleti szelek megjelenésére vezet.

Az általános légkörzés tehát a Földet három különböző övezetre bontja (3.5 ábra), melyekben eltérő irányúak a zonális áramlások. Közülük legerősebb a mérsékelt égői nyugati szelek hatása.

3.7 Rossby-hullámok zonális áramlásban

Tekintsünk kis amplitudójú planetáris hullámokat az \(u_0 = U, v_0 = 0 \) homogén zonális háttérrámlásban. Az északi felőlön \(U > 0 \), a déln \(U < 0 \) felé meg egy nyugatról keletről irányuló folyamnak (nyugati szélek). Az egyszerűség kedvéért hanyagoljuk el a szabad felszín hatását és az aljzat egyenetlenségeit, azaz \(h = H \) állandó.

Mivel a háttérrámlás sebessége egyszerűen hozzáadódik az ismert fázissebességhez, az x irányú terjedési sebesség

\[
\frac{c_x}{U} = \frac{\beta}{k^2}.
\]

(3.39)
A Rossby-hullám a háttéráramlásokhoz képest mindig nyugatra mozog. Ennek érdekess következménye, hogy egy, a Földön álló megfigyelő számára a hullám stacionárius, azaz időtől független, ha a két sebesség kiejtő egymást, s ezért \(c_s = 0 \). Nyugatról keletre történő zonális áramlásban, ahol \(U/\beta > 0 \), ennek feltétele az, hogy a hullámszám a

\[
k_c = \sqrt{\beta / U}
\]

kritikus értéket vegye fel. A megfelelő kritikus hullámhossz

\[
\lambda_c = 2\pi \sqrt{\frac{U}{\beta}}
\]

A legközelebbi \(U = 10 \text{ m/s} \) értékké és \(\beta = 10^{-11} \text{/ms} \)-al számolva, \(k_c = 1/(1000 \text{ km}) \) és \(\lambda_c = 6280 \text{ km} \). Keletről jövő áramlásokban \(U/\beta < 0 \), s ezért stacionárius hullám nem létezhet.

3.8 A domborzat hatása zonális áramlásokra

3.8.1 Geosztrofikus közelítés

A potenciális örvényesség megmaradása a geosztrofikus határesetben \((\zeta \approx 0) \) azt jelenti, hogy a

\[
q = \frac{f(y)}{h} H
\]

hányados állandó az áramvonalak mentén.

Vizsgáljuk meg, mi történik, ha a vízszintes domborzat feletti \(u_0 = U, v_0 = 0 \) homogén zonális áramlás egy észak-déli irányban húzódó aljzati kiludorodással találkozik (hegyvonulat vagy tenger alatti hátság). A domborzat \(d(x) \) alakja független \(y \)-től, magassága \(\Delta H \). Az ezzel járó \(\eta \) felszínű alakváltozás elhanyagolható. A folyadékmélység tehát az áthaladás során a kezdeti \(h = H \) értékről \(h = H - \Delta H \)-ra csökken, majd újra \(H \)-ra nő. Ha a planetáris örvényesség nem függne a szélességtől, ilyen zonális áramlás nem lenne lehetséges, mert a \(h = \text{konstans} \) vonalak észak-déli irányuk. A \(\beta \)-hatás következtében azonban kialakulhat ilyen áramlás, de a hegy fölötti irányt kell értékelni: \(h \) csökkenésének az \(f(y) \) planetáris örvényesség csökkenésével kell párosulnia. Az áramlásnak tehát az Egyenlítő felé kell kitérnie, annál jobban, minél sekélyebb közegben halad (3.6 ábra).

3.6 ábra: Domborzati kiludorodás hatása zonális áramlások vízszintes síkbeli pályájára geosztrofikus közelítésben. A pálya független attól, hogy az áramlás keletről vagy nyugatról érkezik.
Az y_0 referencia szélességtől (melyen a Coriolis-paraméter f_0) számított legnagyobb Δy eltolódást a megmaradási tételből kapjuk, hiszen rá felírhatjuk, hogy
\[
\frac{f(y_0)}{H} = \frac{f(y_0 - \Delta y)}{H - \Delta H} \tag{3.43}
\]
Amennyiben az eltolódás kicsi y_0-höz képest, a jobb oldali számláló $f_0 - \beta \Delta y$-ként írható, s ekkor
\[
\Delta y = \Delta H \frac{f_0}{\beta H} \tag{3.44}
\]
Az eltolódás tehát arányos a felszíni kiemelkedés magasságával. A teljes mélység 1 százaléknak megfelelő kidudorodás közepe szélességeken $\Delta y = 60$ km eltolódást okoz.

A fent alkalmazott sorfejtés akkor megengedett, ha $\Delta H/H \ll 1$, hiszen csak ekkor igaz, hogy $\beta \Delta y \ll f_0$. Magas hegyek esetén tehát a (3.44) formula nem érvényes, a Δy és ΔH közötti reláció nemlineáris, de a kvalitatív kép változatlan: az eltolódás olyan mértékű, hogy az f/H hányados állandó maradhasson. Az eredmény az áramlás sebességtől teljesen függően, így az áramlás irányától is. Az Egyenlítő irányába történő elkanyarodás adott szélességen ugyanakkora akár nyugat-keleti akár kelet-nyugati áramlásról van szó. Domborzati behordások, völgyek esetén az eltolódás ellenkező irányú, hiszen ΔH ilyenkor negatívnak tekintendő.

3.8.2 Nemgeostrofikus eset

A geostrofikus egyensúlytól való eltérés megszünteti a nyugat-keleti és kelet-nyugati áramlások egyenértékűségét. Ekkor ugyanis a ζ örvényesség már nem hanyagolható el a planetáris örvényesség mellett, s nyilvánvalóvá válik az időfüggő változás invariancia sűrűlése a kitüntetett forgásirány miatt.

A zonális áramlás irányának fontosságát érzékelhetendő, tekintsünk először egy nyugat-keleti áramlást vízszintes aljzat felett. Amíg az áramvonalak a szélességi körökkel párhuzamosak, a ζ örvényesség zérus. Ha az áramlás az északi felgömörön valahol északra kanyarodna, a ζ örvényesség pozitív értékűre néne. Ezzel együtt néne azonban az $f(y)$ Coriolis-paraméter, s így a potenciális örvényesség is. A déli kanyarodás a potenciális örvényesség csökkenését eredményezné. Ez ellentmondana a potenciális örvényesség megmaradásának (1. 3.7 ábra) A nyugat-keleti áramlások vízszintes aljzat felett nem térülhetnek el. A kelet-nyugati áramlásokban viszont az északra (déltre) kanyarodás az északi felgömörön ζ negatív (pózitív) válását jelenti, melyet a Coriolis-paraméter helyfüggeszteni készülhet. Ugyanez igaz a déli feltekén is. A kelet-nyugati áramlások vízszintes aljzat felett tehát elkanyarodhatnak.

3.7 ábra: A potenciális örvényesség megmaradásával a sík aljzat felett nyugatról keletre történő áramlás eltérülése nincs összhangban (a), a keletről érkező áramlás viszont eltérülhet (b). Ez a jelenség minkét feltekén érvényes.

Vizsgáljunk most egy nyugatról érkező áramlást, mely az aljzat egy ΔH magasságú lépcsőjére fut föl (3.8a ábra). A lépcső elérése pillanatában az örvényességnak zérusról a ζ_0 értékre kell
ugrania, ahol

\[
\frac{f_0}{H} = \frac{f_0 + \zeta_0}{H - \Delta H},
\]

melyből

\[
\zeta_0 = -f_0 \frac{\Delta H}{H}.
\]

A \(\zeta_0 \) örvényesség mindkét feltétként anticiklonális, \(\zeta_0/f_0 < 0 \), megjelenése az áramlás hirtelen elkanyarodását jelenti az Egyenlítő felé. A lépcső fölött mindenütt fenn kell állnia annak, hogy \(\zeta + f(y) = \zeta_0 + f_0 \). Ezért a \(\zeta \) örvényesség az Egyenlítő felé való mozgás során az északi feltekén nő (a délin csökken), hiszen a planetáris örvényesség az Egyenlítő felé csökken (nő). Így az örvényesség egyszer eléri a zérus értéket, ahol a pályavonal gőrbülete megszűnik. Ezután a gőrbület az eredetivel ellentétesen változik, s mire az örvényesség a \(-\zeta_0\) értéket veszi föl, a pálya érintője ismét szélességi kör lesz. A lépcső fölött hullámzó, meanderező mozgás alakul ki (3.8a ábra). Ennek középvonalai az az egyenes, melyen \(\zeta = 0 \), s melynek a referencia szinttől való \(\Delta y \) eltolódására ugyanaz a (3.43) (vagy annak kicsínységének (3.44)) örvényes mint a geosztfökusz határesetben\(^2\). A \(\Delta H \) paraméter negatív értéke mélyebb közégebe érkezésnek felel meg. Ilyenkor az eltolódás az Egyenlítőtől távolodást jelent, de a meanderezés ugyanúgy kialakul.

![Diagram](image)

3.8 ábra: A domborzat hatása nyugatról érkező nem geosztfökusz áramlásokra. a) Lépcső. b) Véges domborzati elem.

Tekintsünk most egy véges lépcsős domborzati elemet (l. 3.8b ábra). Ennek keleti pereme elérésekor az áramlás örvényességének \(-\zeta_0\) mértékű ugrást kell szenvednie, s ennek következtében a pályavonalak gőrbülete is hirtelen változik. A zérus örvényességű helyzet a \(H \) mélységű tartományban ismét az eredeti \(y_0 \) szélességi körön felel meg, de az áramlás örvényessége csak átlagosan lesz zérus: a meanderezés az \(y_0 \) szélesség körül folytatódik (3.8b ábra). A nyugatról jövő áramlást tehát a domborzati kiemelkedés nemcsak az Egyenlítő felé tolja el, hanem hullámzóvá teszi, s ez a kiemelkedés elhagyása után is fennmarad. A hegy-, vagy völgy-vonulatok keleti oldalán jelentős vízszintes sikkelt hullámmozgásra kell számítani.

\(^2\)A geosztfókus középtésben az árameromlásnak ugrást kellene szenvedniük a lépcső elérésekor.
Az ugyanazon y_0 szélességi kör mentén keletről érkező áramlás másképpen viselkedik. Ha iránya az egész H mélységű tartományban szélességi kör menti volna, akkor a lépcső elérésekor nyert ζ_0 örvényesség az áramlást mindkét félre, a sorok felé térít. Ebben az irányban azonban a planetáris örvényesség abszolútértéke nő, mely megengedné, hogy az örvényesség egyre erősebb legyen, s az áramlás így önmagába visszakanyarodhatna. Ez a sohasem tapasztalt viselkedés úgy zártható ki, hogy feltételezzük, az áramlás már a konstans H mélységű tartományban elkövetik az Egyenlítő felé. Emlékezzünk arra, hogy a potenciális örvényesség megmaradása ezt ez a keletről jövő áramlásban nem zárja ki. A pályavonalak tehát véges szög alatt futnak rá a lépcsőre. Az ott nyert ζ_0 örvényesség ismét a sorok felé térít, de a tehetségmentes a közéget meg az Egyenlítő felé sodorja. Az áramlás a szélességi körök irányába kanyarodik, melyet azsimptotikusan elér (3.9a ábra). Az Egyenlítő felé tolna mértéket ismét (3.43), ill. (3.44) adja.

3.9 ábra: A domborzat hatása keletről érkező nem geozstrofikus áramlásokra. a) Lépcső. b) Véges domborzati elem.

Ennek a folyamatnak a fordítottja játszódik le véges lépcső esetén a lépcső elhagyásakor, mely az eredeti y_0 szinthez történő síma visszakanyarodáshoz vezet (3.9b ábra). A keletről érkező áramlások nem hoznak létre hullámokat a domborzati akadályok mögött.

3.8.3 Alkalmazások

A planetáris örvényesség y-függése alapvetően különböző teszi a különböző irányú zonális áramlások és a domborzat kölcsönhatását. A keletről jövők viselkedése kvalitatív megfigyelés a geozstrofikus közéltésben leírható. A nyugatról jövők azonban már a domborzat fölébb meanderezve tolnak el, s a meanderezést megtartva kerülnek vissza eredeti szélességükre. Így hullámok jönnek létre a domborzati akadályok mögött.

A fenti gondolatmenetben nem használtuk ki az örvényesség kicsinységét. Amennyiben $\zeta < f_0$, azaz a kvázigestrofikus tartományban vagyunk, kvalitatív eredményeink azt jelentik, hogy a nyugatról jövő áramlások Rossby-hullámokat keltenek észak-déli irányú hegy-, vagy völgyvonulatok mögött (l. következő fejezet).

A kvalitatív lép örvényes azonban az f_0-al összehangolt örvényességű áramlásokra is, melyekben a Rossby-szám már közel egységtől. Ezek érdekes példája az ún. jetstream (3.10 ábra),
mely a ±60-as szélességi kör mentén kb. 10 km magasságban kialakuló orkánscatorna. Keresztmetszetének átlagos sugara néhány száz km, a benne megfigyelhető szélességgő pedig elérheti a 200 km/h-t is. A jetstream igen nagy amplitudójú meanderező mozgást végez, így északi változata gyakran lenyűlik Magyarország területe fölől is. Kialakulásában fontos szerepe van az impulzusnyomaték megmaradásának, hiszen jelenléte annak köszönhető, hogy a 30-as szélességeken leszálló meleg trópusi levegő egy része lassan a hűvösebb mérsékelt égővi levegő fölé csúszik egészen addig, amíg a magaslégkörben a 60-adik szélességi kör körüliankor sarkvidéki levegővel találkozik. A sarok felé haladása közben a forgástengelytől mért távolsága jelentősen csökken, s zonális sebessége ennek megfelelően erősebb az impulzusnyomaték tétellel összhangban.

3.10 ábra: Az Északi-sarok körüli húzódó jetstream sematikus képe [Ahrens].

Meanderező áramlások gyakran figyelhetők meg az oceánok felszínén is. Legismertebb példájuk a Golf-áramlat, mely az Egyesült Államok partjaitól a Hatteras-foknál elkanyarodva erősen meanderezővé válik (2. ábra).

3.9 Domborzati egyenlenségek által gerjesztett Rossby-hullámok

3.9.1 Szemléletes kép

Az előző fejezet általános gondolatmenetét kvázigosztrostofikus esetekre alkalmazva, olyan Rossby-hullámokhoz jutunk, melyeket domborzati egyenlenségek gerjesztenek. A hullám kialakulásában alapvető szerepet játszik a \(\beta \)-hatás, de ugyanakkor a lelet-nyugati irányban változó domborzat is, tehát a planetáris és topografikus hullámok keverékértől van szó. Azt az esetet vizsgáljuk, amikor nem egyetlen észak-déli hegy-, vagy völgyvonalat kelt a hullámot, hanem egy kiterjedt hegységrendszer, melynek átlagos hullámhossza \(\lambda \) (3.11 ábra)

3.11 ábra: A zonális áramlás a periodikus domborzat felett Rossby-hullámokat kelt, melyekben a sebesség merőleges a zonális áramlás irányára.

A domborzat rákényszerű a hullámra saját periodicitását, tehát a gerjesztett hullám \(k_x = 2\pi/\lambda \) hullámszámú lesz. Sebessége (3.39) szerint \(c_x = U - \beta \lambda^2/(2\pi)^2 \), ahol \(U \) a háttéráramlás
sebessége. A domborzatot képest nem mozgó, stacionáris hullám akkor alakul ki, ha \(c_x = 0 \), azaz, ha az \(U \) sebesség kielégíti a
\[
\lambda = 2\pi \sqrt{\frac{U}{\beta}}
\]
(3.47)
feltételt. Ekkor a stacionáris Rossby-hullám (3.40) kritikus hullámszáma éppen megegyezik a hegyvonnalával. Az ilyen hullám képes arra, hogy energiát nyerjen a zonális áramlásból: rezonancia-szerű jelenség alakul ki. Rezonancia csakis nyugatról érkező áramlásokra következhet be, amikor \(U/\beta > 0 \) (3.12 ábra).

A keleti jövő áramlások is létrehoznak stacionáris Rossby-hullámokat. Ezek azonban soha sem lehetnek rezonanciához közel, hiszen most (3.47) nem teljesül. Egyetlen hegyvonalat mögött zonális áramlásban nem alakulhat ki ilyen hullám, de ezek sorozata mégis képes Rossby-hullámok gerjesztésére. A nyugat-keleti és kelet-nyugati áramlások közötti éles különbség megmarad, hiszen az ellentétes \(U \) értékekhez tartozó amplitudók igen különbözőek.

3.9.2 Lineáris elmélet

EGYSZERŰ VÁLASZTÁSKÉNT TEKINTSÜK A
\[
d(x) = AH \cos kx
\]
(3.48)
domborzatot, mely egy \(\lambda = 2\pi/k \) kelet-nyugati hullámhosszú, \(A \) dimenziólatlan amplitudójú szinuszfüggvényt leírt hegysegrendszernek féle meg.

A potenciális örvényesség szabad felszínű mozgás híján (\(\eta = 0 \), merev lap közelítés)
\[
q = \frac{f_0 + \zeta + \beta y}{H - d} H \approx f_0 + \zeta + \beta y + Af_0 \cos kx,
\]
(3.49)
ahol az átalakításban felhasználtuk, hogy a kvázigéosztrófikus tartományban dolgozunk, hiszen a \((\zeta + \beta y)d/H\) másodrendűen kis tagot elhanyagoltuk.

![Diagram](image)

\(k_c \)

3.12 ábra: A domborzat által keltett stacionáris Rossby-hullámok amplitudójára \(U \) sebességgő háttéráramlásban a domborzat \(k \) hullámszámnak függvényében. A szaggatott vonallal jelölt legőmböölődés a viszkozitás következménye. A \(k_c = \sqrt{\beta / U} \) kritikus hullámszám több ezer km-es domborzati hullámhossznak felel meg a légkörben.

Kis amplitudójú hullámokat keresünk az \(u_0 = U, v_0 = 0 \) zonális háttéráramlásban. Jelölje a háttéráramlástól való eltérést az \(u' \) vektor \((|u'|, |v'| \ll |U|) \), melyhez a \(\psi' \) áramlásos függvény tartozik. A teljes áramlásos függvény ekkor \(\psi = -Uy + \psi' \). A potenciális örvényesség (2.22)
megmaradásának felírásakor felhasználjuk, hogy \(u = U + u', \ v = v' \). Figyelembe véve, hogy
\[\frac{\partial \zeta}{\partial t} + U \frac{\partial \zeta}{\partial x} + \frac{\partial \psi'}{\partial x} \frac{\partial \psi'}{\partial x} = -\frac{U f_0}{H} \frac{d}{dx} d(x). \] (3.50)
Az örvényesség kifejezhető az áramlás függvényével: \(\zeta = \Delta \psi \), de mivel a homogén háttéramlási örvénymentes \(\Delta \psi = \Delta \psi' \). Így a megmaradási törvény egyenletet jelent az eltérést leíró \(\psi' \) áramlási függvényére:
\[\frac{\partial \Delta \psi'}{\partial t} + U \frac{\partial \Delta \psi'}{\partial x} + \frac{\partial \psi'}{\partial x} \frac{\partial \psi'}{\partial x} = -\frac{U f_0}{H} \frac{d}{dx} d(x). \] (3.51)
A csak az \(x \) koordinátától függő stacionáris áramlás feltétele a (3.48) domborzati függvény behelyettesítése után
\[U \frac{d^2 \psi'}{dx^2} + \frac{\beta d \psi'}{dx} = AU f_0 k \sin (kx). \] (3.52)
A megoldást a \(\psi' = \psi_0 \cos kx \) alakban keresve, ahol \(k \) a (3.48) hegyvonulat hullámzására, azt kapjuk, hogy
\[\psi_0 = f_0 A \frac{U}{U k^2 - \beta} = \frac{f_0 A}{k^2 - \frac{U^2}{k^2}}. \] (3.53)
Itt \(k_c = \sqrt{\beta / U} \) a planetáris Rossby-hullám stacionaritásához szükséges kritikus hullámzám (1. (3.40)).
A hullám tehát lehet stacionáris, s amplitudója annál nagyobb mint \(k_c \)-től közelebb van a hegy-sérgézers, hogy hullámzámra a kritikus értékek. A \(k \to k_c \) esetben rezonancia lép fel, a hullám-amplitúdó formálisan végtelemnél válhat.
A (3.52) egyenlet a
\[\frac{d \psi'}{dx} \to x \quad x \to t \quad \frac{\beta}{U} \to \omega \] (3.54)
megfeleltetéssel, ahol \(x \) az \(\omega \) sajátfrekvenciájú oceállátó kitérése és \(t \) a mozgás ideje, ekvivalensé válík az \(A f_0 k \sin (kt) \) gyorsulással gerjesztett harmonikus oceállátó egyenletével. A rezonancia annak következtében alakul ki, hogy a \(k_c \) hullámzámú perturbáció a domborzat jelenléte nélkül is stacionáris lenne, melyet az ugyanilyen hullámzámú (az analógiában frekvenciájú) gerjesztés nagy energia felvételere tesz alkalmassá.

Ha a hullámzám nagyobb \(k_c \)-nál, az amplitudó pozitív, s az áramlás fázisban van a hegygel: a sarak felé irányuló sebesség maximumok a hegyesecskék, a hosszú hullámok (\(k < k_c \)) esetén azonban fordított a helyzet, az áramlás és a hegyvonulat antifázisban van: a hegyesecskékben Egyenlítő irányú maximális sebesség tartozik.4

A mérsékeltő időjárási szempontjából legfontosabb légkői Rossby-hullámot gerjesztő hegy-ségek a Sziáli hegyseg, a Himalaja, ill. az Andok és a Kelet-Afrikai-hegyseg. Tipikus kelet-nyugati hullámhossza 500 – 2000 km. Ezek nem esnek a rezonancia-feltétel közvetlen közelébe, de a hosszabaknál már örvényesül az amplitudók erősödése.

3.10 Partra merőleges áramlások, nyugati peremáramlatok

Tekintsük egy nagy őceáni medence nyugati partvonala körüli tartományt. Modellünkben a partvonat legyen \(x = 0 \) egyenes, koordinátarendszertünk \(y \) tengelye (3.13 ábra). Vizsgáljunk

3Természetesen ekkor már lényeges a visszhatás is, és \(U \) állandósága nem jogos felfüvelés.

4Az amplitudót a viszkozitás végeként teszi még a rezonancia-hullámzámhoz is (l. 11.4 fejezet).
először egy part felé irányuló kelet-nyugati áramlatoz, melynek sebessége nagy távolságban \(U \), s \(U / \beta < 0 \). Keressük, hogyan térül el az áramlás észak-déli irányában a parthoz közeledve. Az egyszerűség kedvéért tegyük fel, hogy a felszín változásai elhanyagolhatók.

3.13 ábra: Nyugati óceáni partnak futó \(U \) sebességtű áramlás által keltett erős peremáramlat az északi féltekén. A tehetszénőség határállapota \(\Delta = \sqrt{U/\beta} \).

Geosztfikus egyensúlyban az áramlásnak az \(y = \) konstans vonalakat kellene követnie, de a peremfeltétel miatt azokon zérus sebesség alakulhat csak ki. A \(\beta \)-hatás lehetővé tesz egy nemtriviális viselkedést, mely szerint a folyadék, amíg csak lehet, az \(y = \) konstans vonalak mentén halad, s utána hirtelen egy \(\Delta \) vastagságú sávban elkanyarodik (egy keletről jövő áramlás ezt megteheti). A \(\Delta \) vastagság egyszerűen becsülhető a megmaradási tételel alapján. Az elkanyarodási pont körüli \(\Delta \) oldalhosszúságú négyzetben az örvényesség nagyságrendje \(U/\Delta \), ezért a potenciális örvényesség ott \(q = U/\Delta + f_0 + \beta \Delta \). Ennek meg kell egyeznie a távoli beáramlás során felvett értékkel. Ez minden \(y \)-ra \(q = f_0 \) hiszen a homogén áramlás örvénymentes. Ebből a karakterisztikus vastagság

\[
\Delta \equiv \sqrt{\frac{-U}{\beta}}.
\] \hspace{1cm} (3.55)

A nyugati partvonl mentén tehát egy erős áramlás (nyugati peremáramlat) alakul ki egy végcs \(\Delta \) vastagságú réteghen, melyet tehetszénőségi (azaz nem viszkozus) határállapognek is szokás nevezni (3.13 ábra).

Ugyanazt az eredményt kaphatjuk anannk a képnek felhasználásával is, hogy a nyugati perem a rövid hullámhosszú Rossby-hullám okozta zavarak felhalmozódnak. A háttéráramlásban a Rossby-hullám (3.38) csoportsebességhez hozzáadódik az \(U \) sebesség is, így

\[
e^* = U + \frac{\beta}{K_s}.
\] \hspace{1cm} (3.56)

Azokra a hullámszámakra, melyek energiája nem szakadhat el a parttól, \(e^* < 0 \), s ezek hullámyszáma éppen a \(k_x > \Delta^{-1} \) feltételt elégetik kí.

A határállapot vastagsága a \(\Delta \) paraméter néhányszorosa. Az óceáni körök nyugatra irányuló sebességt \(U \approx 0,01 \) m/s-ra becsülve, \(\Delta \approx 30 \) km. Az óceáni medencek nyugati peremek valóban erős áramlások figyelhetők meg a \(\beta \)-hatás következményeként. Ilyenek a Golf-áramlat, a Japán partjai előtt futó Kuroshio-áramlat, a Braziliai áram, a Madagaszkár és Afrika közötti Agulhas-áram, és a Kelet-ausztráliai áram. Ezek vastagsága néhányszor tíz km, mely jól megfelel a fenti \(\Delta \) értékekn. A nagy óceáni körök tehát nem közeppontosak, áramlás sebességük a
nyugati peremén jóval nagyobb mint a keletin, ahol a sebesség akár a nyugati ezredreszére is lecsökkenhet.

Vizsgáljuk most meg röviden, mi történik, ha az áramlás a parttól elfele irányul, azaz \(U/\beta > 0 \). Ekkor a \(\Delta \) paraméter formálisan imaginárius lesz, \(\Delta = i\sqrt{U/\beta} = i/k_c = i\lambda_c/(2\pi) \), ahol \(\lambda_c \) a (3.41) kritikus hullámhossz. A térfogó viselkedés most nem exponenciális lecsengés, hanem szimmetrikus hullámzás, mely egyfajta stacionárius Rossby-hullámmal analóg. Ez azt jelenti, hogy a falra merőlegesen meanderező áramlás alakul ki (3.14 ábra), melynek átlagos zonális sebessége \(U \). Úgy tűnik tehát, hogy a peremfeltétel hasonlóan viselkedik mint egy akadály: nyugat-keleti áramlásban a peremtől keletre hullámok keletkeznek.

![3.14 ábra: Az óceán nyugati partvonalától \(U \) átlagsebességgel eltartó áramlás az északi feltekén. A hullámhossz \(\lambda_c = 2\pi\sqrt{U/\beta} \).](image)

Végül a fentiek alapján felvázolható, hogy milyen az áramlás jellege egy észak-déli irányban zárt medencében, ahol az Egyenlítőhöz közeli peremen az áramlás a nyugati part felé mutat. A sarok felé történő áramlás a part melletti \(\Delta \) vastagságú tartományban történik, erős nyugati peremáramlat alakul ki, mely a sarokhoz közelebbi perem miatt a parttól elkanyarodik, s ott meanderező mozgásba kezd (3.15 ábra).

![3.15 ábra: Zárt óceáni medencében kialakuló áramlás sematikus rajza a nyugati partvonal körül az északi feltekén.](image)

3.11 A kvázigosztroszi fikus egyenlet a \(\beta \)-síkon

A felszíni és domborzati \(\eta \), ill. \(d \) alakok kicsinüszét feltételezve, a potenciális örvényesség

\[
q = \frac{f + \zeta}{H(1 + \eta/H - d/H)} H \approx \left(f_0 + \zeta + \beta y - \frac{f_0\eta}{H} + \frac{f_0 d}{H} \right).
\]

(3.57)
Mivel a felszíni alak vezető rendben arányos az áramlási függvényel (1. (2.25)) \(\psi = \eta g/(2\Omega) \), a megmaradási törvény a fenti \(q \)-ra a

\[
\left[\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right] \left(\Delta \psi - \frac{1}{\mathcal{R}^2} \frac{d}{\mathcal{H}} \right) + \frac{\partial^2 \psi}{\partial x^2} = 0
\]

(3.58)

alakot őlti. Ez a \(\beta \)-síkon érvényes kvázigéosztrofikus egyenlet. A 2.7 fejezetbeli alakhoz képest itt megjelenik a \(\beta \)-hatást kifejező utolsó tag, mely lineáris az ismeretlen áramlási függvényben.

A (3.35) diszperziós relációjú planetáris Rossby-hullám a fenti kvázigéosztrofikus egyenlet vízszintes aljzathoz \((d = 0) \) tartozó változatának harmonikus sík hullám alakú (de nem feltétlenül kis amplitudójú) megoldása.

A kvázigéosztrofikus közélítés érvényességi köre a dimenzióltanított alak felirásából olvasható le. A potenciális örvényesség \(U/L \) egységekben

\[
q = \left(\frac{1}{\mathcal{R}^2} \left(1 - \frac{\eta}{\mathcal{H}} + \frac{d}{\mathcal{H}} \right) + \zeta + \frac{\beta L^2}{U} \right)
\]

(3.59)

alakú. A két utolsó tag akkor összemérhető, ha a \(\beta L^2/U = \pm \text{Be}/\mathcal{R} \) dimenzióltan szám is egységnyi, ahol \(\text{Be} \) a (3.18) dimenzióltan \(\beta \)-paraméter. A (3.18) összefüggés alapján ez azt jelenti, hogy

\[
\frac{L}{\mathcal{R}^2} \sim \mathcal{R}^2
\]

(3.60)

azaz a vízsgált tartomány lineáris méretének nemesak egyszerűen kicsinek kell lennie a Föld sugárhöz képest, hanem a konzisztencia azt követeli meg, hogy a méret a Föld sugár Rossby-számszorosa nagyságrendjébe eső. \(\mathcal{R} = 0.1 \) mellett így is több száz km-es tartományok vizsgálhatók. Ahhoz, hogy a többi változó is azonos rendű legyen, (3.59)-ben teljesültne kell annak is, hogy \(d, \eta \sim \mathcal{R} \cdot \mathcal{R} \cdot \mathcal{R} \), amint azt már a (2.7) fejezetben láttuk.

A dimenzióltan kvázigéosztrofikus egyenlet így

\[
\left[\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right] \left(\Delta \psi - \frac{(F\psi)}{\mathcal{R}^2} \frac{d}{\mathcal{R}^2} \right) + \frac{\partial^2 \psi}{\partial x^2} = 0.
\]

(3.61)

Két kvázigéosztrofikus áramlás akkor lehet hasonló, ha Froude-számuk, domborzatuk, és \(\beta \)-paraméterük Rossby-számban viszonyított nagysága is azonos.
4. fejezet

A viszkozitás hatása

Súrlódó sekély folyadékban a viszkozus erőnek a Coriolis-erőhöz való viszonyát az

\[Ek = \frac{\nu}{|f_0| H^2} \left(= \frac{\nu}{2|\Omega| H^2} \right) \]

Ekman-szám méri. Két áramlás akkor lehet dinamikailag hasonló, ha Ekman-számuk is megegyezik. A \(\nu \) kinematikai viszkozitás helyett környezeti áramlásokban a jóval nagyobb \(\nu_{\text{turb}} \) turbulens viszkozitás használható, de az Ekman-szám még ezzel is kicsinek, \(10^{-5} - 10^{-5} \) körüli értéke adódik. Ez is mutatja, hogy a viszkozitás a folyadék nagy részében elhanyagolható. A peremek körül két- tezik azonban egy keskeny határréteg, ahol a súrlódás lényeges szerepét játszik. A határréteg \(D \) vastagsága abból becsülhető meg, hogy ott a viszkozus és a Coriolis-erő összefüggését, ezért a \(D \)-re vonatkozóhatás megközelítő Ekman-szám értékének, ami \(D \sim H \sqrt{|\text{Ek}|} \sim \sqrt{v/|\Omega|} \). A forgatótt rendszerben kialakuló Ekman-féle határréteg állandó vastagsági (4.1 ábra), szemben a nem forgatótt rendszerben kialakulóval, mely az áramlás irányában egyre nagyobb kiterjedésűvé váló. D számértéke a mértékelő épület tengerekre \(40 - 50 \) m, a légkörben kb \(1 \) km.

A gyorsan forgatótt esetben a határrétegben stacionárius áramlás alakul ki, melyet a viszkozus, a nyomási és a Coriolis-erő egyensúlya biztosít (4.2 ábra). Ennek következtében a határrétegbe vonatkozó áramlás nem izobilak mentén történik, s érdekes módon függ a magasságtól.

Az alsó határrétegben a sebességnek az alsó peremén el kell tűnnie. Onnét felfelé haladva a sebesség nő a folyadék belsejében kialakult geostrofikus sebesség eléréséig, a határréteg felső pereméig. A Coriolis-erő jelenléte miatt azonban az erők nem esnek egy egyenesbe, s ezért felfelé haladáskor a viszkozus-sebesség két sebességét, a sebesség el kell fordítana. A sebesség az ún. Ekman-spirálat (4.3 ábra) követve változik, mely az északi féltekén eleinte jobbra történő elfordulást jelent. A felszín közelében ez a jobbra fordulás a magassággal pedig a meteorológiában közismert.

E fel-, vagy leáramlások a folyadék belsejében súkkal összefolyást, ill. szétterülést eredményeznek (4.4 ábra). Ennek következménye a 1., 1.11 és 1.12 ábránk áramlásainak spirális szerkezete. A vízszintes súkkal áramlásra azonban hat a Coriolis-erő, s éppen ilyen irányban, hogy a geostrofikus örvényesség csökken. Az Ekman-pumpálás tehát az örvényesség csillapításával is jár. Ennek \(t_0 \sim 1/\sqrt{\text{Ek}} \) relaxációs ideje a légkörben néhány nap, az óceánban ennél sokkal több, de mindig jóval rövidebb a viszkozitásból adódó hagyományos csillapítási időnél. Ennek következtében
a potenciális örvényesség nem állandó a mozgás során, hanem időben lassan csökken. A planetáris Rossby-hullámok ezért véges élettartammal, átlagos idejük éppen 30. Ez a légkörben néhány nap, és változó az időjárás átlagos változásai idejének felel meg. Ugyanez a jelenség biztosítja a gerjesztett planetáris hullámok amplitudójának véges értékén maradását a rezonancia körül (3.12 ábra).

A felső határérték felszínén rendszerint nem fél helyezkedik el, hanem ott egy külső közegek által kellett \(\tau \) nyúrásai feszültség hat. A szélnyúrás tipikus erőssége a vizek felszínén néhány tíz \(N/m^2 \) az ennek hatására kialakuló felszíni sebesség-növekmény a Coriolis-erő következtében azonban nem párhuzamos a nyúrásal, hanem azzal 45 fokos szögter zár be. A határértégen lefelé haladva a sebesség-növekmény spirál alakban elfordulva csökken (4.6, 4.7 ábra), s tart zérushoz a folyadék esetében a szélnyúrás mellett.

Az átlagos sebesség-növekmény, vagy annak a határértéget quantitációval vett szorzata, az ún. Ekman-transzport, pontosan merőleges a nyúrás irányára és attól az északi feltekin jobbra mutat (4.8 ábra). A Coriolis-erő és az egész nyúrás erő kompenzálására a határértékről állatban. Ez arra a meglepő eredményre vezet, hogy a szelek nyúrás irányára merőleges többletáramlást hoznak létre a felső határértéken. A gyorsan forgatott rendszerben a folyadék nem arra áramlik, amelyre a szél fújja. Ez magyarázza Nansennek, az Északi-sark kutatójának megjegyzéseit, miszerint a jéghegyek mindig a szelekkel jobbra sodródik.

A nyúrás erősségeként ill. az Ekman-transzportnak dimenziótlan mérőszáma az

\[Sh = \frac{\tau_0}{f_0 \rho U H} \]

nyúrás paraméter, ahol \(\tau_0 \) a nyúrás dimenziós átlagértéke. Az \(Sh \) paraméter tipikus értéke 10\(^{-3}\). A szélnyúrásnak kitett áramlások hasonlóságának szükséges feltétele az \(Sh \) paraméterek azonossága.

Az Ekman-transzport rendszerint fel vagy leáramlást is okoz (4.9 ábra), melynek erőssége igen csekély (a tengerben néhány dm/nap) de nagy fontosságot. Féláramlás esetén ugyanis friss, tápanyagban gazdag hideg víz kerül a felszínre, mely a halászat eredményessége szempontjából döntő. Ilyen felszálló partmenti vizek általában az óceánok keleti partja mentén alakulnak ki a szubtrópusi óceánon (4.10 ábra), vagyis ott, ahol az élén van jelentős parttal párhuzamos kompo-nense. A föld teljes halászatának mintegy fele a feláramlás területére koncentrálódik.

Az északi feltekin negatív körüljárású, anticiklonális nyúráseloszlás a centrum felé mutató Ekman-transzportot és ezzel leáramlatot hoz létre (4.12 ábra). Általánosan a nyúrás erő rotációja annyios a felső határértéknél kialakuló feláramlás sebességgel, s ez örvényesség-változást okoz.

Ez a kép lehetőséget ad a zárt óceáni medencében a szél és a viszkozitás hatására kialakuló áramlások értelmezésére, melyek jó közöltéssel geofizikus egységyúgy vannak. Ha a nyugati szél az északi peremen, a keleti pedig a délnél veszi fel maximális erősségét, akkor a nyúrás-eloszlás rotációja a medencében negatív (4.1 ábra), így leáramlást okoz. A Sverdrup-összefüggés értelmében ehhez mindenütt déle a délről mutató genger áramlásnak kell tartoznia. A délere irányuló áramlást azonban a kontinuitás miatt valahol egy északra mutató áramlásnak kell kompenzálnia. Erre csak a medence nyugati peremén kerül sor, és egy keskeny révben (4.13 ábra). A nagy anticiklonális óceáni körök ezek szerint eggyütt járva nem centrálisak, hanem középpontjuk a nyugati perem közelébe esik. Földültük és alattuk általában kialakul még egy-egy ciklonális forgás kör is: a poláris és az egyenlítői körök (4.14 ábra). Ez a megközelítés a valóságos szél-nyúrásos feszültségek független feltételeivel hónapok megadja az óceánok felszíni áramlás rendszerét és kijelöli a nagy nyugati peremáramlatok helyét (4.15 ábra).

A peremáramlatait vastagságára is jó leírást kapunk, ha figyelembe vesszük, hogy az alsó határrétégenek is szerepe van, mégpedig ettől, ahol a geofizikus örvényesség a legnagyobb, vagyis a hirtelen elhanyarodást megkötő nyugati peremen. Ez a jelentős geofizikus örvényesség a függőleges irányú áramlás előjelét pozitívává változtatja, s úgy a Sverdrup-reláció következtében egy
északra mutató geostrofikus komponens jön létre (11.2 ábra). A Stommel nevéhez fűződő elmélet helyes nagyságrendi becslést ad a Golf- és a többi nyugati peremáramlat vastagságára.

A szénájrás fontos szerepét játszik a kisebb skálájá és ezért már nem geostrofikus jelen-
ségekben is. Egyik fontos következménye az állandó viharos szél hatására kialakuló part menti vízszintemelkedés, a viharhullám, mely a Coriolis-erő által a part felé szállított folyadék felhalmo-
zódása (11.4 ábra) egy Rossby-sugárral arányos vastagságú partmenti sávban. Állandó szélerőség egyenletes vízszintemelkedést okoz, melynek sebessége a parton áránként több dm is lehet.

4.1 Az Ekman-szám

A viszkozus gyorsulás tetszőleges összefoglalóan folyadékban a (1.23) Navier–Stokes-
egyenlet szerint

\[\nu \Delta \mathbf{v} = \nu \frac{\partial^2 \mathbf{v}}{\partial x^2} + \nu \frac{\partial^2 \mathbf{v}}{\partial y^2} + \nu \frac{\partial^2 \mathbf{v}}{\partial z^2}. \]

Az \(x \) és \(y \) szerinti deriváltak az \(L \) lineáris méret reciprokával arányosak, a \(z \) szerinti pedig a \(H \) mélység reciprokával. Ezért az első két tag \(\varepsilon^2 \equiv (H/L)^2 \)-szerese a harmadiknak, és sebesség közegben elhanyagolható. Így sebesség folyadékban

\[\nu \Delta \mathbf{v} \approx \nu \frac{\partial^2 \mathbf{v}}{\partial z^2}. \]

A forgó Föld felszínén elhelyezkedő sebesség forgatott folyadékban az \(\mathbf{u} \) vízszintes síkbeli sebesség Navier–Stokes-eigenlete\(^1\) ezért

\[\frac{d \mathbf{u}}{dt} = -f \mathbf{n} \times \mathbf{u} \left(-\frac{1}{\rho} \text{grad} p' \right) + \nu \frac{\partial^2 \mathbf{u}}{\partial z^2}, \]

ahol \(\mathbf{n} \) a függőleges z irányú egységektor\(^2\). A viszkozitás miatt \(\mathbf{u} \) függhet a magasságtól, ezért \(d/dt \) a háromdimenziós teljes derivált. A függőleges sebességkomponens a

\[\text{div} \mathbf{v} = \text{div} \mathbf{u} + \frac{\partial w}{\partial z} = 0 \]

divergenciamentességi feltételből kapható.

Érdemes felirni a dimenziótlan alakot is. Az áttekinthetőség kedvéért \(f \) helyfüggését el-
hanyagolva: \(f \equiv f_0 \), a \(z \to Hz \) és (1.30) helyettesítséssel a

\[R \frac{d \mathbf{u}}{dt} = \mathbf{u} \times \mathbf{u} - \text{grad} p' + E \mathbf{k} \frac{\partial^2 \mathbf{u}}{\partial z^2} \]

dimenziótlan egyenletbe jutunk. Ebben megjelen az

\[E k = \frac{\nu}{|f_0| H^2} \]

Ekman-szám (V. W. Ekman (1874–1954) svéd oceanográfus, a forgatott folyadékból viszkozitás
hatásának első leírójája). Végyök észre, hogy ez a szám függően az áramlás sebességtől. Két
viszkozus áramlás akkor lehet hasonló, ha Ekman-számuk is megegyezik.

\(^1\)A továbbiakban mindegy a lokális rendszerben érvényes \(f \) planetáris érvényességet használjuk, mely
tartalmazza a \(\beta \)-sik közéltében megszegedt lineáris \(y \)-függést. A laboratóriumi kísérletekre vonatkozó
eredmények az \(f \to 2 \Omega \) köműs helyettesítéssel kaphatók.

\(^2\)Mivel függőleges irányban a sebesség miatt hidrostatikai viszonyok érvényesülnek, a \(p' \) dinamikai
nyomás kapcsolatban áll a szájad felszín \(\eta \) alakjával: \(p' = \rho_0 g \eta \).
Ez az új dimenziótlansága a viszkozitás és a forgatás egymáshoz képesti erősségét méri. Mivel a viszkozus $\nu \Delta \mathbf{v}$ gyorsulás nagyságrendje $\nu U/H^2$, s az ennek megfelelő relaxációs idő $t_\nu = H^2/\nu$, azt is írhatjuk, hogy

$$\frac{E_k}{\text{viszkozus gyorsulás}} = \frac{\text{Coriolis-gyorsulás}}{\text{forgási idő}}$$

(4.7)

Gyorsan forgatott rendszerben az Ekman-szám sokkal kisebb mint 1.

Az Ekman-szám kapcsolatos az (1.28)-ban definiált Reynolds-számmal. Mind Re, mind Ro a vízszintes kiterjedést tartalmazza, ezért a keresett kapcsolatban megjelenik az ε mélységi arány is:

$$E_k = \frac{Re \varepsilon^{-2}}{Ro}$$

(4.8)

A 1.1 táblázatban látott, hogy nagyskalájú környezeti áramlásokban a Reynolds-szám rendkívül nagy, 10^{11} nagyságrendű. A mélységi arányt $\varepsilon = 1/100$-nak véve, és felhasználva, hogy a Rossby-szám 0,1 körüli, az Ekman-szám értéket 10^{-6}-on belül megszólítjuk. Egy tipikus visszalévő laboratóriumi kísérletben ($\nu = 10^{-6} \text{m}^2/\text{s}$) percentilént 10 körülfordulással, $\Omega \approx 1 \text{ \textit{1/s}}$ és 3-30 cm-es vízmélységgel származik $E_k = \nu/(2\Omega H^2) = 5 \cdot 10^{-4} - 5 \cdot 10^{-6}$.

Abban a tartományban, az ún határátereget (1. következő fejezet), ahol a viszkozitás lényeges szerepet játszik, a környezeti áramlások rendszerint turbulensek, s kis távolságokon nagymértékű térdelő és időbeli rendeletlességet mutatnak. A turbulens mozgás jelentősen megnöveli a nagyobb távolságokon érzékelhető effektív viszkozitás mértékét, mely egy ν_{turb} turbulens viszkozitás (eddys viscositás) együttálló megjelenéséhez vezet (1. 7.2 fejezet). Ezért az Ekman-számban és minden más kifejezésben, ahol a kinematikai viszkozitás szerepel, el kell végezni a

$$\nu \rightarrow \nu_{\text{turb}}$$

(4.9)

helyettesítést. Annak ellenére, hogy a turbulens viszkozitás együttható számértéke rendszerint függ az áramlás jellegétől és a peremtől mért távolságtól is, jó tájékozódással szolgál átlagos értéke. Ez levőben $\nu_{\text{turb}} = 5 \text{ \textit{m} }^2/\text{s}$ és vízben $\nu_{\text{turb}} = 10^{-2} \text{ \textit{m} }^2/\text{s}$, azaz mintegy száz-, ill., tízezer-szorosan nagyobbak molekuláris értékeiknél. Az így számolt Ekman-szám közepes szélességeken ($f_0 = 10^{-4} \text{ \textit{1/s}}$) a 10 km vastagságú légréteg $E_k = 5 \cdot 10^{-4}$, a 4 km átlagos mélységű oceánná pedig $E_k = 6 \cdot 10^{-6}$. Ez éppen az a nagyságrend, ami laboratóriumban is elérhető. Az egyezés biztosítja, hogy a nagyskalájú jelenségek a viszkozitás szempontjából is jól modellezhetők kísérletekkel.

4.2 Az Ekman-féle határátereg

4.2.1 Szemléletes kép

Az Ekman-szám kicsinyeze azt jelenti, hogy a viszkozitás erő a folyadék-tartomány igen nagy részében elhangzolható a többi erőhöz képest, ahogy ezt eddig is ismertünk. Ez az elhangzolás azonban mindenütt nem lehet jogos, hiszen akkor a peremfeltételek nem megfelelőek. Ezért léteznie kell egy határáteregnek, melyben a viszkozus erő ugyanolyan lényeges szerepet játszik mint a többi. Gyenge viszkozitás esetén a határátereget kiesik, s a folyadék döntő része ideális ként viselkedik. A forgatott folyadékban a határátereg annál készenyebb, minél kisebb az Ekman-szám (4.1 ábra).

A határátereg D vastagsága egyszerű gondolatmenettel megbeépülhető. Ebben a tartományban ugyanis az $|f_0|U$ rendű Coriolis-gyorsulás a fentiek szerint összemérett a viszkozus gyorsulással, melynek nagyságrendje a D vastagságú határáteregben $\nu U/D^2$. Ebből

$$D = C \sqrt{\frac{\nu}{|f_0|}}$$

(4.10)

ahol C dimenziótlan állandó. Bár határréteg kialakul mind hagyományos, mind forgatott folyadékókban, az utóbbi eset fontos új tulajdonsága, hogy D nem fiúgg a helytől. A nem forgatott esetben a határréteg az áramlás irányában vastagodik, vagy időben nő. Ez összhangban van azzal a tényvel, hogy az \(f_0 \to 0 \) határesetben \(D \) végtelenhez tart, azaz az átlagos vastagság értelmét veszi. Az \(f_0\) planetáris örvényesség helyfüggését is figyelembe véve, a határréteg az Egyenlítő felé vastagodik. Annak közvetlen közelében azonban Ekman-féle határréteg nem alakulhat ki, hiszen ott a forgatás hatása elenyésző.

A határréteg dimenziótlan, azaz \(H \) egységekben mért vastagsága

\[
\frac{D}{H} = C\sqrt{Ek},
\]

az Ekman-szám gyökével arányos. A határréteg tehát valóban sokkal keskenyebb a teljes folyadékmélységnél.

A gyorsan forgatott esetben a \(C \) szám \(\pi \sqrt{2} = 4.4 \) nek adódik (l. 5.3.1, 5.4.1 fejezetek). Így levégőben, ahol \(\sqrt{Ek} \approx 2 \cdot 10^{-2} \) kb. 1 km vastagságú. Ez a planetáris határréteg, a benne turbulensen kevert nagy por- és szennyezéstartalom miatt jól megfigyelhető repülőgép lezállása közben. Tengervízben \(\sqrt{Ek} \approx 2 \cdot 10^{-3} \), ezért a turbulens határréteg, melyet Ekman-rétegnek is neveznek, mintegy 40 m vastagságú. A fent említette laboratóriumi kísérletben \(\sqrt{Ek} \approx 7 \cdot 10^{-3} \), ezért a határréteg vastagsága 3 mm.

4.2.2 A gyorsan forgatott határeset

A forgatott sekély folyadék határrétegében érvényes (4.5) egyenletben a gyors forgatás a \(Ro \approx 0 \) határesetnek felel meg, miközben az \(Ek \) Ekman-szám véges és kicsi. Feltételezve, hogy a dimenziótlan gyorsulások egységnyi rendűek, a bal oldal eltűnik. Az (4.3) dimenziós alakban ez azt jelenti, hogy

\[
-fn \times u - \frac{1}{\Theta} \text{grad}p' + \nu \frac{\partial^2 u}{\partial z^2} = 0.
\]

A gyorsan forgatott folyadék határrétegében tehát \textit{stacionárius áramlás} alakul ki, melyben három erő: a visközus, a nyomási és a Coriolis-erő egysúlyozza egymást, amint azt az 4.2 ábrán

\[\text{3} \text{A turbulens helyett a kinematikai viszkozitással számolva 1 m-t kapnánk.}
\[\text{4} \text{A kinematikai viszkozitással 40 cm.}
\]

83
Ebből a feltételből már most leolvasható az Ekman-rétegbeli sebességeloszlás egy meglepő tulajdonsága. Ha távolodunk a peremtől, akkor a sebesség abszolútértéke nő, a viszkózus erő csökken, mint minden határrétegben. Most azonban ezzel együtt a Coriolis-erő is nő. Az erők eredője csak úgy maradhat zárús, ha közben a Coriolis-erő iránya is változik. Az Ekman-rétegben függőleges irányban haladva a sebesség irányának is változás kell, azaz a sebesség vektor elfordul. Ez a magasságfüggő elfordulás csak a forgatott folyadékkbeli határrétegek sajátja.

A határrétegen kívül a viszkozitás elhanyagolható, s a folyadék belsejében geostrofikus áramlás alakul ki valamilyen u_g sebességgel. Az ezt fenntartó dinamikai nyomás, mely a folyadék belsejében amúgyis független a magasságtól, a keskeny határrétegbe változatlanul hatol be. Feltehetjük tehát, hogy az (4.12)-ben szereplő p' ugyanaz, mint a folyadék belsejében, s ezért kifejezhető az ottani sebességgel:

$$\frac{1}{\theta_0} \text{grad} p' = -f n \times u_g. \quad (4.13)$$

A z-től független geostrofikus áramláshoz tehát az

$$f n \times (u - u_g) = \nu \frac{\partial^2 (u - u_g)}{\partial z^2} \quad (4.14)$$

eyenlet adj meg a határrétegben létrejövő sebességeloszlást. Komponensekben

$$-f (v - v_g) = \nu \frac{\partial^2 (u - u_g)}{\partial z^2}, \quad f (u - u_g) = \nu \frac{\partial^2 (v - v_g)}{\partial z^2}. \quad (4.15)$$

Ez állandó együthatós, homogén lineáris egyenlet, mely meghatározza a geostrofikustól való sebességeltérés z-függését. A megoldás mindkét komponensét exp (λz) alakban keresve azt kapjuk, hogy $\lambda^2 = -f^2/\nu^2$, melyből $\lambda = \pm (-1)^{1/4} \sqrt{f/\nu} = \pm \sqrt{f/2\nu}(1 \pm i) / \delta$. Itt

$$\delta = \sqrt{2\nu/|f|}. \quad (4.16)$$
egy hosszúság jellegű paraméter, mely arányos a (4.10) becsülésből kapott D-vel. Az általános megoldás ezért

$$u - u_g = e^{\pm z/\delta} \left(A \sin \frac{z}{\delta} + B \cos \frac{z}{\delta} \right)$$

típusú. Ehhez

$$v - v_g = \frac{f}{f} e^{\pm z/\delta} \left(A \cos \frac{z}{\delta} - B \sin \frac{z}{\delta} \right)$$

tartozik, amint arról behelyettesítéssel meggyőződhetünk. Az A, B együththatók a peremfeltételek határozzák meg.

4.2.3 Peremfeltételek

Rögzített falak mellett a sűrűlő folyadék felvesszi a fal sebességét. Ezt szokás tapadási peremfeltételnek nevezni. A leggyakrabban előforduló álló fal esetén a sebesség zérus, tehát

$$\mathbf{v} = 0.$$ (4.19)

Más típusú a peremfeltétel, ha egy szabad felszínre adott nyíróerő hat. Ez nem a sebességet, hanem annak deriváltjait írja ott elő. Esetünkben ilyen helyzet a felső felszínre fordul elő, melyre, a felette függ szel hat nyíróerővel. Tegyük fel, hogy ismert a vízszintes síkban elhelyezkedő egységnyi felületetek ható nyíróerő, a τ szényírás vektor, melynek x és y irányú komponensei (τ_x, τ_y), azaz $\tau \equiv (\tau_x, \tau_y, 0)$.

Homogén izotróp összenyomhatatlan folyadékban a j normálisú egységnyi felületre ható nyíróerő l irányú komponense

$$\sigma_{j,l} = -p \delta_{j,l} + \nu \frac{\partial \mathbf{v}}{\partial x_l} \left(\frac{\partial \mathbf{v}_j}{\partial x_l} + \frac{\partial \mathbf{v}_l}{\partial x_j} \right).$$ (4.20)

Ennek rögzített l irány mellett vett (j szerinti) divergenciája adja a $(-\text{grad} \mathbf{v} + \nu \mathbf{v} \Delta \mathbf{v})$ felületi erőt az összenyomhatatlan folyadék (1.23) egyenletében\(^5\). A függőleges normálisú ($j = 3$) lapon vízszintes síkban megjelenő nyírás szokásos sebesség-jelölésünkkel tehát

$$\sigma_{3,l} = \nu \frac{\partial \mathbf{v}_3}{\partial x_l} + \frac{\partial \mathbf{v}_l}{\partial x_3},$$ (4.21)

ahol $l = 1$ az x, $l = 2$ az y komponensnek felel meg. A felületen ennek kell megfelelnie a külső τ nyírás komponenssel.

Sokély folyadékban a helyzet tovább egyszerűsödik, ugyanis a zárójel első tagja jóval kisebb a másodiknál\(^6\). Ilyenkor tehát a függőleges irányú változások a legfontosabbak, s a perem a

$$\tau \equiv \nu \frac{\partial \mathbf{u}}{\partial z}$$

összefüggésnek kell fennállnia.

A (4.2) közelítéssel elvethető be lehetőséget arra, hogy a tapadási peremfeltételt függőleges síkbeli határokon előírjuk. Azt egy D-nél is keskenyebb oldalsó határérték figyelembevételével tehetjük meg, ahol a teljes (4.1) érvényes. A (4.2) közelítés tehát az oldalsó peremeken az ideális folyadék határfeltételelel (\mathbf{u} peremre merőleges komponense $= 0$) konzisztens.

\(^5\)A divergenciamentességi feltétel miatt a $\partial \mathbf{v}_j/\partial x_l$-el arányos tag eltűnik. Összenyomható közegben ez a tag járulékozatot ad a vízszintes erő λ grad\mathbf{v} alakú részéhez (1. 1.16). Ugyanilyen típusú járulék adódik ahol is, hogy ekkor a $\sigma_{j,j}$ diagonális nyíróerőkben (4.20) mellet megjelenik egy div\mathbf{v}-vel arányos tag.
\(^6\)Arányuk ε^2 rendű.
4.3 Az alsó határréteg

4.3.1 A sebességeloszlás

Tekintsünk egy vízszintes, nem mozgó aljzat fölött elhelyezkedő határréteget. Az $z = 0$ színtől elhelyezkedő aljzattól mért magasság függvényében keressük a sebességeket. A vízszintes kompomensekre a $z = 0$ színtől a (4.19) peremfeltétel értelmében $u = 0$. Ugyanakkor a folyadék belsejében a geoszfokikus áramlást kell visszakapunk, tehát $z \to \infty$ mellett $u \to u_g$.

A geoszfokikus áramlástól való eltérést megadó (4.17), (4.18) megoldásban a z-ben expozenciálisan növekvő viselkedést (a kitéveből felső előjelet) az $u \to u_g$ peremfeltétel miatt ki kell zárunk. A tapadási peremeltetést $z = 0$-ra kielegítő $u = 0$ megoldáshoz (4.17) alapján $B = -u_g$ tartozik. Ugyanakkor $v = 0$ miatt (4.18)-ből $A = -v_g f \sqrt{|f|}$. Ezzel

$$u = u_g - e^{-z/z_0} (u_g \cos \frac{z}{z_0} \pm v_g \sin \frac{z}{z_0}), \quad v = v_g + e^{-z/z_0} (\pm u_g \sin \frac{z}{z_0} - v_g \cos \frac{z}{z_0}),$$

ahol az alsó előjel a déli feléken érvényes megoldáshoz tartozik. Vektoriálisan

$$\textbf{u} = u_g (1 - e^{-z/z_0} \cos \frac{z}{z_0}) \pm \textbf{n} \times u_g e^{-z/z_0} \sin \frac{z}{z_0}.$$ (4.24)

Mindeket alak világosan mutatja, hogy a geoszfokikus felét jelentős, és iránybeli változásban is kifejeződik. Bármiyleik félőmbről van is szó, a határrétegbeli áramlás sebesség nem párhuzamos az izotárokkal, hanem az alacsonyabb nyomás felé mutat, hiszen $\pm \textbf{n} \times u_g$ arányos gradf' ellentettjével (1. (4.13)).

Nyugatról érkező geoszfokikus áramlás esetén $u_g \equiv u_0, v_g = 0$, s a sebességeloszlás

$$u = u_0 (1 - e^{-z/z_0} \cos \frac{z}{z_0}), \quad v = \pm u_0 e^{-z/z_0} \sin \frac{z}{z_0}.$$ (4.25)

A határrétegben tehát észak-déli áramlás is kialakul.

A határréteg alá, $z \ll \delta$, a (4.24) összefüggés szerint a sebesség lineárisan tűnik el a magassággal:

$$\textbf{u} = (u_g \pm \textbf{n} \times u_g) \frac{z}{\delta} = (u_g \mp v_g, v_g \pm u_g) \frac{z}{\delta}.$$ (4.26)

Ebből az is látszik, hogy a sebesség a geoszfokikus felé képest 45 fokos szögét zárva jelenik meg. Az északi feléken (felső előjel) a geoszfokikus felé áramlásra mutat. Féljebb haladva a sebesség nagysága nő, és a geoszfokikusra merőleges komponens is erősödik. Egy maximum elére után ez a komponens csökkeni kezd, s végül nullához tart (4.3 abra). A sebességvektor irányára az emelkedéssel a geoszfokikus felé fordul, kicsit töllendül u_g irányán, majd visszafordulva éri azt el. A sebességvektorok ezt a magassággal való viselkedését nevezzük Ekman-spirálnak.

Az ábrákra leolvasható, hogy a $z = \pi \delta$ magasságban a geoszfokikus áramlás gyakorlatilag helyreállt (hisszen $\exp(-\pi) = 0.04 \approx 1$, s ezért $\pi \delta$ azonosítható a határréteg vastagságával:

$$D = \pi \sqrt{\frac{2\mu}{|f|}} = \pi \delta.$$ (4.27)

Ezzel a (4.10) kvalitatív becslésben szereplő C együtthatót is meghatározottuk.

A felszín közeli szeleknek a magasságban való jobbra történő elfordulása jól ismert tény az északi feltéken, s nem más mint az Ekman-spirál egyik következménye. A felszín megfigyeléseken alapul bárikus szélétrövny ezt úgy fejezi ki, hogy ha az északi (déli) feléken háttal állunk a szelenek, akkor előbb fordulunk mintegy 30 foknyit az óramutató járásával megegyező (ellenétes) irányba, s akkor lesz a jobb (bal) oldalunk a magas nyomású terület. Ennek egy másik megnyilvánulása az, hogy az anticiklonok alsó litégeiében szétáramlás, a ciklonokében pedig összeáramlás is végbejegy, s így a ciklonok és anticiklonok légtevégei legalább részben kicsereződhetnek a planetáris határrétegben (4.4 abra). A ciklonokkal társuló lassú középpont irányú mozgás alakítja ki az 1.1 ábrán látható jellegzetes spirális pályákat is.
4.3 ábra: Az alsó határrétegben az északi feltekén: a) Különböző magasságokban kialakuló \(\mathbf{u} \) sebességvektók a folyadék belsejében uralkodó \(u_g = u_0, v_g = 0 \) geostrofikus áramlás esetén. A spirál mellé írt számok a \(\delta \) egységekben mért magasságot mutatják. b) Az \(u \) és \(v \) sebességkomponensek magasságfüggése. A határrétegbeli sebesség a \(z = D = \pi \delta \) szinten (a határréteg peremén) jó közeliéssel meggyezik a folyadék belsejében jelenlevő geostrofikus sebességgel.

4.4 ábra: Szélessebesség irányok ciklonok és anticiklonok alsó légrétegeiben az északi feltekén.

4.3.2 Az Ekman-pumpálás

A felszín közel szétterüles vagy összéaramlás világosan mutatja, hogy a határrétegben a kétdimenziós divergencia nem zérus, s ennek következtében fel-, vagy leáramlásoknak kell létrejönniük. Az Ekman-féle (4.24) megoldás alapján

\[
\text{div} \mathbf{u} = \pm \text{div}(\mathbf{n} \times \mathbf{u}_g)e^{-z/\delta} \sin \frac{z}{\delta},
\]

(4.28)

hiszen \(\mathbf{u}_g \) divergenciamentes. Mivel az \(\mathbf{n} \times \mathbf{u}_g \) vektor komponensei \(-v_g \) és \(u_g \) divergenciája nem más, mint a geostrofikus áramlás

\[
\zeta_g = \frac{\partial u_g}{\partial x} - \frac{\partial v_g}{\partial y},
\]

(4.29)

87
őrvényességének ellentettje. A függőleges irányú sebességre a háromdimenziós összenomhatatlanságból a
\[\frac{\partial w}{\partial z} = -\text{div} \mathbf{u} = \pm c \frac{e^{-z/\delta}}{\delta} \sin \frac{z}{\delta} \] (4.30)
eyenlet adódik. A határérték felső peremén, a \(z = D \) szinten tehát véges, \(w_+ \) nagyságú függőleges irányú sebesség van jelen. Ez beható a geostrofikus tartományba, tehát ott is lesz fel-, vagy leáramlás. Az exponentiális magasságfüggés miatt \(w_+ \) jó közelítéssel megtegyük a \(z \to \infty \) re kapott sebességgel. A legalsó szinten \(w \)-nek el kell tűnnie, ezért az egyenletet \(z = 0 \)-tól végtegnél integrálva a keresett sebességre
\[w_+ = \pm \frac{1}{2} c \frac{e^{-z/\delta}}{\delta} = \pm \frac{1}{2\pi} c \delta D \] (4.31)adódik (hiszen \(\int_0^\infty \exp(-x) \sin x \, dx = 1/2 \)). A folyadék belsejében kialakult geostrofikus örvényesség tehát fel-, vagy leáramlást indít el a határértékeben (4.5 ábra). Ezt a folyamatot Ekman-pumpálásnak nevezik. Intenzitása a határérték vastagságával is arányos, s az Egyenlítő felé erősödik. Végük észre azt is, hogy a ciklonális örvényesség feláramlóval párosul: \(w_+ > 0 \), az anticiklonális leáramlóval. Mindez összhangban van a hétkőzni meteorológiai tapasztalattal, hiszen a feláramlás rendszerint csapadékdzsebészéssel, a leáramlás pedig száraz időjárással jár.

4.5 ábra: Az Ekman-pumpálás a határértégből a folyadék belsejébe irányuló függőleges áramlás, melynek erőssége a folyadék belsejében jelenlevő geostrofikus áramlás örvényességével arányos. A feláramláshez ciklonális, a leáramláshez anticiklonális geostrofikus mozgás tartozik.

Az \(UH/L \) egységekben mért feláramlási sebességre azt kapjuk, hogy
\[w_+ = \pm c \sqrt{E k/2} \] (4.32)tehát az Ekman-szám gyökével arányos. Ennek megfelelően a függőleges sebességek a légköri (ahol \(UH/L = 10^{-1} \text{ m/s} \)) tipikusan mm/s, az óceánban (ahol \(UH/L = 10^{-1} \text{ m/s} \)) \(10^{-7} \text{ m/s} \) \(\approx \) cm/nap nagyságrendűek.

Akármilyen gyenge is a függőleges irányú áramlás, igen fontos jelenség, hiszen korrekció jelent a geostrofikus viselkedéshez, s a folyadék belsejében is eltérést jelez a szigorúan kétdimenziós áramlástól. Ezért a (3.27) Sverdrup-reláció következtében lassú észak-déli áramlások is kialakulnak.

4.3.3 A felpörgetési idő

Az Ekman-pumpálás a határérték feletti geostrofikus tartomány örvényességével arányos, s ez fontos következménnyel jár az örvényesség időbeli fejlődésére nézve is. A sekély ideális folyadéknak vonatkozó (2.19) egyenlet szerint
\[\frac{d\zeta}{dt} = (\zeta + f) \frac{\partial w}{\partial z} \] (4.33)
A közel geostrofikus esetben ζ elhanyagolható a planetáris örvényesség mellett. A folyadék belsejében a w sebesség az also határréteg fölötti w_+ értékű zérsra csökken a $z = H$ felszín eltérésekor, amennyiben szényírás nem hat. Ezért a $d w_+/d z$ derivált, melynek z-függetlennek kell lennie sekély folyadékbán, $-w_+/H$-ként írható (hiszen $H - D \approx H$). Ezzel az f_0 sik közéltéssben

$$\frac{d \zeta_g}{dt} = -f_0 \frac{w_+}{H} = \frac{f_0}{2H} \frac{\zeta_g}{\zeta_g} = -\frac{f_0}{2H} \frac{\zeta_g}{\zeta_g}$$

Az örvényesség időbeli változását tehát a határréteg vastagsága, s ezen keresztül a viszkozitás szabályozza. Az időderivált magával az örvényességgel arányos, egyúthatója mindig negatív, s ezért exponenciális lesz a folyamat. A relaxációs idő az f_0 sik közéltéssben

$$t_0 = \frac{2H}{f_0 \delta} = \frac{\sqrt{2}}{f_0 \sqrt{E_k}}$$

Az Ekman-réteg örvényesség-csökkentő hatását. Mivel $Ek \ll 1$, a relaxációs idő jóval hosszabb a forgási időnél: a légköri néhány nap, az óceánban néhány hét. A viszkozus relaxáció $t_r \equiv H^2/\nu_{urb} = t_0/\sqrt{Ek}$ ideje azonban még ennél is sokkal hosszabb, a levegőben kb. 100 nap, az óceánban több év. Laboratóriumi példáinkban $t_0 \approx 3$ perc, t_r pedig 2,5 óra. Az Ekman-pumpálás tehát jóval hatékonyabb csillapítási mechanizmuszhoz vezet, mint a hagyományos viszkozitásból adódó.

Ez a következő egyszerű gondolatmenet tel ét hető meg. Ha egy edényt hirtelen addott szögebességgel pozitív irányba kezdünk forgatni, akkor a folyadék nagy része kezdetben nyugalomban marad, tehát az edényhez képest negatív, anticklonális örvényességgel rendelkezik. Az alsó határrétegben kiáramlást, a folyadék belsejében leáramlást alakul ki. Ezt a felszínén összefolyásnak kell késérnie. A radiálisan a tengely felé áramló részecskéket a Coriolis-erő jobbra téríti, s így pozitív cirkuláció jutóvá teszi, tehát csökkenti a folyadék teljes örvényességét. Az örvényesség zérushoz tartása annak feltétele, hogy lassan az egész folyadék átveszi az edény szögebességét. A t_0 relaxációs időt szokás ezért felpörgetési időnek is nevezni. A felpörgetési folyamat az Ekman-pumpálás nélkül sokkal lassabb lenne.A t_0 felpörgetési idő annál rövidebb, minél gyorsabban a forgás!

4.4 A felső határréteg

4.4.1 A sebességeloszlás

Tekintsünk egy közel vízszintes folyadékfelszínt, melyre a felette füjő szél miatt τ nyírófeszült-ség hat. Az egyszerűség kedvéért koordinátarendszerünk orgiogóját erre a szintre helyezzük. A felszín alatti D vastagságú határrétegben keressük a sebességeloszlást, melynek most egy fontos ismeretlen maga a felszínű áramlás érősség is. A vízszintes sebességkomponensekre a $z = 0$ szinten a (4.22) peremfeltétel örvényes. Ugyanakkor a folyadék belsejében a geostrofikus áramlást kell visszakapjunk, tehát $z \to -\infty$ mellett $u \to u_g$.

A geostrofikus áramlástól való eltérést megáldó (4.17), (4.18) megoldásban a mélységgel exponenciálisan növekvő viselkedést (alsó előjel) az $u \to u_g$ peremfeltétel miatt ki kell zárnunk. A (4.22) nyírási peremfeltétellekből $A + B = \tau_g \delta/(\nu \delta), A - B = \pm \nu_g \delta/(\nu \delta)$, ahol az előjel az f Coriolis-paraméter elôjele, $s \delta$ továbbra is a (4.16) kombináció. Ezt (4.17), (4.18)-ba helyettesítve a sebességeloszlás

$$u = u_g + \frac{e^{z/\delta}}{\nu \sqrt{f}} \left(\tau_g \cos \left(\frac{z}{\delta} - \frac{\pi}{4} \right) \mp \nu_g \sin \left(\frac{z}{\delta} - \frac{\pi}{4} \right) \right),$$

(4.36)
\[v = v_g + \frac{e^{z/\delta}}{\theta_0 \sqrt{v_f}} \left(\pm \tau_x \sin \left(\frac{z}{\delta} - \frac{\pi}{4} \right) + \tau_y \cos \left(\frac{z}{\delta} - \frac{\pi}{4} \right) \right). \quad (4.37) \]

Vektoriálisan

\[u = u_g + \frac{e^{z/\delta}}{\theta_0 \sqrt{v_f}} \left(\tau \cos \left(\frac{z}{\delta} - \frac{\pi}{4} \right) \pm (n \times \tau) \sin \left(\frac{z}{\delta} - \frac{\pi}{4} \right) \right). \quad (4.38) \]

Mindkét alak világosan mutatja, hogy a geosztrofikustól való eltérés csakis a nyírásnak köszönhető, nem függ az alsó \(u_g \) folyadékáramlástól, s kis viszkozitás esetén igen jelentős. Ráadásul az áramlásnak mindig létezik a \(\tau \) szélyírásra merőleges komponense is, melyet (4.38) második tagja ír le.

A folyadék felszínén (\(z = 0 \)-ra)

\[u = u_g + \frac{1}{\theta_0 \sqrt{2v_f}} (\tau \mp n \times \tau). \quad (4.39) \]

Ott tehát a sebességnövekmény 45 \(\text{fokos szög} \) zár be a nyírás feszültségéggel, az északi féltekén a szélyírásból \textit{jobbra} mutat, s nagysága \(|\tau|/(\theta_0 \sqrt{v_f}) \). A tipikus szélyírás feszültség 0,1 N/m², mely közepes szélességében 0,1 m/s sebességnövekményekre vezet! Viharos szelek nyírás erőssége elérheti a néhány N/m²-t is.

![Diagram](image)

\textbf{4.6 ábra:} A felső határréteg az északi féltekén: A határrétegbeli sebességnövekmény-vektor sematikus magasságfüggés.

Az északi féltekén (felső előjel) a határrétegben lefelé haladva a sebesség geosztrofikusra merőleges komponense csökken, előjelet vált, s végül nullához tart. A sebességvektor iránya egyre tovább fordul a nyírás irányától, miközben a sebesség nagysága gyorsan közeledik a geosztrofikushoz. A sebességvektormak ezt a magassággal való viselkedését is Ekman-spirálnak nevezzük (4.6 ábra). A \(z = -\pi \delta \) mélységben a geosztrofikus áramlás gyakorlatilag helyreáll (4.7 ábra), s ezért \(\pi \delta \) ismét azonosítható a határréteg vastagságával (l. (4.27)). Fontos hangsúlyozni, hogy a határréteg vastagsága tehát \textit{független} a nyírás erősségtől, noha a benne kialakuló többletsebesség arányos a nyírás.

A tenger felszíne alatti áramlások sebességének spirális mélységfüggése valóban megfigyelhető. A turbulens viszkozitás helyfüggése és a rétegezettségből adódó hatások miatt azonban az (4.38) alak valamelyest eltér a mértől.
4.7 ábra: A felső határréteg az északi földekén: a) A sebesség-spirál vetülete az \((u, v)\) síkra keleti irányba mutató nyúrási vektor \(\tau_x > 0, \tau_y = 0\) esetén. A spirál mért mélyésével mutatják. b) A sebességvökmény kelet-nyugati és észak-déli komponenseinek magasságfüggése. A határrétegbevaló sebesség a \(D = \pi \delta\) mélységben (a határréteg peremén) jó közeliessel megengedik a folyadék belsejében jelenlevő \(u_y\) geoszfuszkus sebességgel.

4.4.2 Az Ekman-transzport, fel- és leáramlások

Érdemes megvizsgálni, hogy a nyírás milyen nagyságú geoszfuszkustól eltérő anyagmozgást hoz létre a teljes határrétegben. Definiáljuk ezért az

\[
S = \int_{-\infty}^{0} (u - u_y) \, dz
\]

(4.40)

Az Ekman-transzport nevű mennyiséget, mely megadja, hogy a viszkozitás következtében időegység alatt mekkora felületű anyag folyik át egy függőleges egyenes mentén, vagy mekkora tőrgató anyag a folyadék teljes mélységét átfogó, egységnyi szélességű felületen. Az Ekman-transzport és \(D\) hányadosa a határrétegbeli átlagos sebesség. Az integrál alól határozott kényelmi okokból veszik végelemmel. A sebességeltérés nagyságának a magassággal történő exponenciális lecsengése miatt az integrál a \(z = -D\) szint alatt már gyakorlatilag nem ad járuléket.

Az (4.14) egyenletet integrálva, (4.40) alapján megkapjuk az Ekman-transzportra vonatkozó összefüggést:

\[
f n \times S = \frac{\tau_x}{\theta_0},
\]

(4.41)

ugyanis a sebesség \(z\) szerinti deriváltja az alsó határon zérus (hiszen ott a mozgás geoszfuszkus), a felsőn pedig a nyírással arányos. Ebből

\[
S = \frac{1}{\theta_0} \int f \times n = \frac{1}{\theta_0} \int (\tau_y, -\tau_x).
\]

(4.42)
Az Ekman-transzport tehát éppen merőleges a szélnyírási vektorra, s az északi feltekén \(\tau \)-tól jobbra, a délin balra mutat (4.8 ábra).

4.8 ábra: Az \(S \) Ekman-transzport, a \(\tau \) nyírásási vektor, és az \(u \) felszíni áramlási sebesség egymáshoz viszonyított iránya az északi feltekén. A \(C \) vektor az Ekman-transzportnak megfelelő átlagos sebesség-növekményre ható Coriolis-erőt jelöli, mely merőleges magára az Ekman-transzportra.

Azt a meglepő eredményt kapjuk, hogy a viszkozitásból adódó átlagsebesség az Ekman-rétegben merőleges a szabad felszínen ható nyírás erőire. A sarkkutató F. Nansen (1861-1930) megfigyelése, miszerint az északi-feltekén a jéghegyek a szelektől jobbra sodródnak vezette Ekman (1905-ben) az azóta róla elnevezett sebességeloszlás és transzport elméleti leírására. A transzport irányítottsága ismét olyan tulajdonság, mely csak forgatott folyadékban lehet érvényes, a nem forgatott folyadék ugyanis arra áramlik, amerre a szél hajtja. A kapott orientációs szabály annak következménye, hogy a teljes határrétegben a sebesség-növekményvel kapcsolatos Coriolis-erőnek pontosan kompenzálnia kell az egyetlen külső erőt, a felszíni szélnyírást.

Az Ekman-transzport nyírásra merőleges irányának fontos következményei vannak az óceáni áramlásokra nézve. Az uralkodó szelek által kellett nyírás Ekman-transzportot alakít ki az óceánok felső határrétegében. Sokszor egy lokális szélnyírás következtében létrejött transzport indítja el a folyadéktömegek tehetetlenségi mozgását (1.19 fejezet).

A szélirányra merőleges felszíni áramlás, vagy annak inhomogenitása, a kontinuitás következtében függőleges irányú áramlást is magával hoz. Így például az Egyenlítő környéki passzátszelek miatt az Ekman-transzport a sarkok felé irányul, s ez az Egyenlítő övezetett jelentős feláramlási területtel teszi (4.9a ábra).

4.9 ábra: A szelek és az Ekman-transzport viszonya. a) Egyenlítői övezet, b) Észak-déli futású partvonalak az északi feltekén,

Ahol a szelekenk van jelentős parttal párhuzamos összetevője, és a part ettől a vektortól az északi feltekén balra (a délin jobbra) esik, ott az Ekman-transzport a parttól elfelé mutat, s ezért
feláramlás alakul ki (4.9b ábra). Tipikusan ez a helyzet az óceánok keleti partjain, mint például Peru, Kalifornia, vagy Nyugat-Afrikai partjai mentén. Feláramlásoknak fontos gazdasági szerepe van partvonalak közelében, ugyanis a felszálló víz tápanyagban gazdag és ezért jó halászati lehetőséget teremt. A Föld teljes halászatának mintegy fele erre a néhány fontos feláramlás területre koncentrálódik (4.10 ábra).

4.10 ábra: A fel- és leáramlások átlagos januári erőssége az óceánokon. A feláramlás az Egyenlítő környékén és a medencék keleti partvidékei mentén jelentős. Maximális értéke 20 cm/nap [Duxbury].

Cirkuláris nyíráseloszlás is fel-, ill leáramlásokat okoz, s ez nagy jelentőségű az óceáni áramlások megértésében (l. 4.6 fejezet). Ha például a nyírási vektortér negatív körüljárású, az a centrum felé irányuló Ekman-transzportot eredményez (4.12 ábra), s ennek következtében az északi feltekén leáramlást.

\[\nabla \times \tau < 0 \]

4.11 ábra: Cirkuláris (itt ciklonális) nyíráseloszlás és Ekman-transzport az északi feltekén.

4.4.3 Ekman-pumpálás, nyírás okozta örvényességváltozás

A fenti kvalitatív példák is mutatják hogy a kétdimenziós sebességszigetválasz a felső határértéken sem zérus. A létrejövő függőleges áramlás erőssége kvantitatívan is meghatározható. Tekintsük a háromdimenziós összenyomhatatlanágot kifejező \(\nabla \cdot (\mathbf{v} - \mathbf{v}_g) = 0 \) egyenletet, mely írható a

\[
- \frac{\partial (w - w_g)}{\partial z} = \frac{\partial (u - u_g)}{\partial x} + \frac{\partial (v - v_g)}{\partial y}
\]
alakba is. A teljes mélységére integrálva a jobb oldalon az Ekman-transzport divergenciája jelentik meg, a bal oldalon pedig a felszíni \(w_g(z = 0)\) geoztrofikus feláramlást jelent (az egyzat sebessének a felszínen el kell tűnnie: \(w(z = 0) = 0\)). A határréteg keskenysége miatt viszont a függőleges geoztrofikus sebesség ott jó közelítéssel állandó, s megegyezik a réteg alján megfigyelhető \(w_-\) feláramlást. Őn: \(w(z = 0) = w_-.\) Így

\[
w_- = \frac{\partial S_x}{\partial x} + \frac{\partial S_y}{\partial y} = \frac{1}{\rho_0 f} \left(\frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y} \right) = \frac{1}{\rho_0 f} \text{rot}_z \mathbf{\tau}
\]

(4.44)

A nyírás-eloszlás

\[
\text{rot}_z \mathbf{\tau} \equiv \frac{\partial \tau_y}{\partial x} - \frac{\partial \tau_x}{\partial y}
\]

(4.45)

örvényessége határozza tehát meg a fel-, vagy leáramlás erősségét. Negatív nyírás-örvényesség az északi feltekén leáramlást okoz (4.12 ábra), összehangban az 4.11 ábra felszíné képével. Ezt a folyamatot is Ekman-pumpálásnak nevezzük, s intenzitása az Egyenlítő felé erősödik.

\[
\frac{\delta \tau_y}{\delta x} - \frac{\delta \tau_x}{\delta y} < 0
\]

\[
\begin{array}{c}
D \\
\Rightarrow \\
\mathbf{w}_-
\end{array}
\]

4.12 ábra: A felső határrétegben történő Ekman-pumpálás a határétegből a folyadék belsejébe irányuló függőleges áramlás, melynek erőssége a szélnyírás rotációjával arányos. A feláramláshoz ciklonális szélnyírás (az északi feltekén \(\text{rot}_z \mathbf{\tau} > 0\)), a leáramláshoz anticiklonális szélnyírás (az északi feltekén \(\text{rot}_z \mathbf{\tau} < 0\) tartozik.

Az \(UH/L\) egységében mért feláramlást sebességre azt kapjuk, hogy

\[
w_- = Sh \ \text{rot}_z \mathbf{\tau},
\]

(4.46)

ahol

\[
Sh \equiv \frac{\tau_0}{\rho_0 f_0 H U}
\]

(4.47)

Itt az egyszerűség kedvéért az \(f_0\) sík közéltést használtuk, \(\tau_0\) a nyírás feszültség jellegzetes nagysága és \(Sh\) annak dimenzióltalan kifejezése, a nyírás paraméter. A nyírás paraméter a szélnyírás következtében kialakuló feláramlás vagy az Ekman-transzport dimenzióltalan mértéke, de más jelentéssel is rendelkezik. Az (4.39) összefüggésből leolvasható, hogy \(\tau_0/(\rho_0 U \sqrt{\rho_0 f_0})\) megadja, hogy a szélnyírás okozta sebesség mértéke a geoztrofikusnak. Ezért írhatjuk, hogy

\[
Sh = \sqrt{Ek} \ \frac{\text{szélnyírás okozta sebesség}}{\text{geoztrofikus sebesség}}
\]

(4.48)

A nyírás paraméter tehát a nyírás erősségét méri, s az Ekman-szám mellett egy újabb fontos dimenzióltalan paraméter.
Mivel a szél által létrehozott nyírás típusuk mért értéke 0,1 N/m² nagyjából, az Sh paraméter értéke közepes szélességeken, $U = 0,01$m/s és $H = 4$ km mellet 10⁻² körüli. Ugyanígy nagyságú nyírás paraméter elérhető laboratóriumban pl. úgy, hogy $2\Omega = 1/s$, $H = 40$ cm, s a többi adat változatlan. A szélnyírás okozta feláramlás dimenziós erőssége az óceánban $10^{-2} U H / L = 10^{-2} 10^{-4} m/s$, azaz néhány dm/nap. Ez a függőleges mozgás általában lényegesen erősebb, mint az alsó határrétegből induló Ekman-pumpálás.

4.5 A sekélyfolyadék egyenletek szélnyírással

Kihasználva, hogy a felső határrétegben viszkoszorú csak a szélnyírásból függ, felirhatjuk a sekélyfolyadék egyenletek kiterjesztését a külső felszínén ható nyíróerő jelenlétében. Az alapgondolat az, hogy a határréteg alatti viszonylag vastag folyadéktartomány továbbra is sekély kőegént megzog, s ezért benne az \mathbf{u} sebesség független a magasságtól. Keskeny határréteg jelenlétében (4.3) hidrodinamikai egyenletek a folyadékmélyésre vonatkozó átlagát vevé, a viszkózus tag kivételével minden tag gyakorlatilag megégyezik az ideális folyadéktartományban érvényes kifejezésével. A viszkózus tag maga z szerinti derivált, ezért integrálja csak a felszínről ad járuléket, a $\nu \partial \mathbf{u} / \partial z$ kifejezést. Ez azonban (4.22) szerint a $\mathbf{\tau}$ szélnyírás és a sűrűség hányadosa. Kismértékű η felszínízadózat és viszszintes aljzat feltételezve, a folyadék mélysége $h = H + \eta$. Mivel η jóval kisebb az átlagos mélységnél, a viszkózus erő átlagolásában η nem lép fel. Ezzel a mélységre átlagolt sekélyfolyadék egyenlet

$$\frac{du}{dt} = - f \mathbf{n} \times \mathbf{u} - g \, \text{grad} \eta + \frac{\mathbf{\tau}}{\rho_0 H},$$

s érvényes a (2.13) kontinuitási egyenlet is. A felső határréteg tehát első közelítésben csak annyiban módosítja a sekélyfolyadék egyenleteit, hogy azokban külső gerjesztő erőként megjelenik a szélnyírás. Az egyenlet levezetésében csak azt használtuk ki, hogy a felső határréteg keskeny. Ezért az egyenlet nemcsak a kvázigosztrafikus mozgásokat írja le, hanem azokat is, melyekben a Coriolis-erő nem dominál (a Rossby-szám egységnyi), sőt véges tartományokban a nem forgatott, szélnyírt folyadék leírására is alkalmazható (tehát kisebb tavak, pl. a Balaton áramlásainak vizsgálatára).

A nyírt sekély folyadék (4.49) egyenletének dimenziótlan alakjára a 2.2 fejezetben alkalmazott eljárást a $\mathbf{\tau} \rightarrow \tau_0 \mathbf{\tau}$ transzformációval kiegészítve kapjuk, hogy

$$\frac{d\mathbf{u}}{dt} = \mp \frac{1}{\rho_0} \mathbf{n} \times \mathbf{u} - \frac{1}{Fr^2} \text{grad} \eta + \frac{\mathbf{Sh}}{\rho_0} \mathbf{\tau}.$$

Itt megjelent az (4.47) nyírás paraméter. Ennek jelentése a nem kvázigosztrafikus esetben az, hogy $Sh/Ek = \tau_0 / (\nu \rho_0 U / H)$ a felszíni nyírás viszonya ahhoz az elképzelt nyírás feszültségéhez, mely a folyadék átlagos U sebességének kialakításához lenne szükséges.

A (4.49) egyenlet rotációját véve a ζ örvényesség változására azt kapjuk, hogy

$$\frac{d\zeta}{dt} + (\zeta + f) \text{div} \mathbf{u} = \frac{\text{rot} \mathbf{\tau}}{\rho_0 H}.$$

A div $\mathbf{u} = -dh/(hd$t) kontinuitási összefüggést felhasználva a $q \equiv (\zeta + f) H / h$ potenciális örvényesség egyenlete:

$$\frac{dq}{dt} = \frac{\text{rot} \mathbf{\tau}}{\rho_0 H}.$$

A potenciális örvényesség tehát a szélnyírás jelenlétében nem megmaradó mennyiség: a nyírási rotáció a potenciális örvényesség nyelője vagy forrása.

7Amennyiben a teljes $\nu \Delta \mathbf{u}$ tagot megtartjuk a Navier–Stokes-egyenletben, akkor a potenciális örvényesség nyelője kis jelentősen megjelenik (4.52) -ben a $\nu \Delta \zeta H / h$ tag is, mely azonban rendszerint jól kisebb mint a nyírásból származó.
A gyorsan forgatott geosztrofikus határesetben, amikor \(\zeta \) elhanyagolható \(f \) mellett, kialakul egy \(u_g \) stacionárius áramlás, amennyiben a nyírás időtől független. Ezt az

\[
u_g \frac{\partial}{\partial x} \left(\frac{f}{h} \right) + v_g \frac{\partial}{\partial y} \left(\frac{f}{h} \right) = \frac{\text{rot}_z \tau}{\theta_0 h}
\]

feltételehatározza meg. A nyírás miatt a geosztrofikus sebesség már nem az \(f/h \) mennyiség szintvonali mentén alakul ki (v.ő. (3.23)).

4.6 A szélhajtotta óceán

4.6.1 Általános megfontolások

Az óceánok nagy felszíni áramlásait elsősorban az uralkodó szelek és az akik által követett nyírás erők alakítják ki. Felszíni áramlásban a felső határrétegben és az alatta levő ideális folyadék tartományban létrejövő mozgást értjük, mely első közelítésben geosztrofikus egyensúlyban levőnek tekinthető.

A fiziikai kép a következő: a felső határrétegben az Ekman-pumpálás függőleges áramlást hoz létre. Ez befolyatja a folyadék belsejébe, s a \(\beta \) hatás miatt érvényes (3.27) Sverdrup-reláció következtetében észak-déli irányú geosztrofikus áramlást hoz létre. Természetesen kelet-nyugati mozgás is létezhet, de azt a fel-, és leáramlások nem befolyásolják. A nagy óceáni áramlások teljes megértése tehát csak a \(\beta \)-hatás és az Ekman-réteg együtt ismeretében lehetséges.

Mivel a \(\partial w / \partial z \) deriváltak z-től függetlenek kell lennie, az \(H \) mélységűnek feltételezett óceán belsejében \(\partial w / \partial z = w_\perp / H \). Itt \(w_\perp \) a feláramlás sebesség a felső határréteg alján. Az alsó határrétegből származó \(w_+ \) sebességet egyelőre elhanyagoljuk, hiszen az általán alakul kisebb \(w_\perp \)-nál. A (3.27) Sverdrup-reláció szerint a létrejövő geosztrofikus áramlás észak-déli \(v_g \) sebességkomponensét a

\[
v_g \beta = f \frac{w_\perp}{H}
\]

összelevegehatározza meg. A (4.44) feláramlás sebességet a szélnyírás rotációja adja, s ezzel

\[
v_g = \frac{\text{rot}_z \tau}{\beta \theta_0 H}.
\]

Ez nem más, mint a potenciális örvényesség tétele a geosztrofikus határesetben (l. (4.53) elhanyagolható felszíni alakváltozás \(h \approx H \) mellett. Az észak-déli áramlás erősségét a szélnyírás tehát egyértelműen meghatározza. A teljes \(H \) mélységben kialakuló áram, azaz a folyadék aljáig leérő egységnyi szélességű feltülen átáramló folyadéktér fogat az ún. Sverdrup-transzport

\[
V = \frac{\text{rot}_z \tau}{\beta \theta_0}.
\]

A \(\theta_0 V \) tömegáram nagysága tehát egyszerűen a szélnyírás rotációja és a \(\beta \) paraméter hányadosa. Dimenzióban alakban: \(V = Sh/Be \text{ rot}_z \tau \). A Ekman- és a Sverdrup-transzport nagysárendi viszonyát tehát a dimenziókon \(\beta \) paraméter adja. Mivel ez egynél kisebb, a teljes Sverdrup-transzport nagyobb a határrétegalakító Ekman-transzporttól. Ha pl. 0.1 N/m² nyírőfeszültség-különbség 250 km-en lép fel, akkor \(v_g = 0,01 \) m/s és \(V = v_g H = 40 \) m²/s. Ugyanakkora nyírás hatására az Ekman-transzport nagysága 1 m²/s (az ehhez tartozó kb. 0,25 m/s sebességővemény azonban nagyobb \(v_g \)-nél, hiszen a réteg csak 40 m mély).
A (4.55) reláció nagy jelentőségű, ugyanis a szélhírás, vagy a feláramlás egész óceáni medencére terjedő ismeretében meghatározza az észak-déli sebességet, de ezzel az egész áramlási teret is, hiszen a geosztrófikus áramlás vezető rendben divergenciamentes (a néhány dm/nap feláramlást sok nagyságrenddel kisebb a majdham m/s erősségű vízszintes sebességeknél). Az óceáni áramlásban rendelhető ezért egy ψ geosztrófikus áramlási függvény, mellyel \(\nu = \partial \psi / \partial x \), s az egyenlet a

\[
\frac{\partial \psi}{\partial x} = \frac{\text{rot}_z \mathbf{T}}{\beta \theta_0 H}
\]

alakot öli. Ez a megfelelő \((x, y)\) síkbeli peremfeltételekkel meghatározza a \(\mathbf{T} \) szélhírás feszültség következtében kialakuló geosztrófikus áramlási teret.

Mielőtt egy konkrét modellt vizsgálnánk, vezessük be a

\[
\Psi \equiv \psi H
\]

mélységi vagy transzport áramlási függvényt, mely a teljes óceáni mélységben kialakuló anyagáramlást jellemzi 8. A (4.56) Sverdrup-transzport tehát \(\Psi \) függvény \(x \) szerinti deriválta. Ha két közeli áramvonalon a mélységi áramlási függvény értéke \(\Psi \) ill. \(\Psi + \Delta \Psi \), akkor a közútük levő tartományban egységes nyíló alatt \(\Delta \Psi \) térfigató anyag áramlást álthat a teljes mélységben. Ez könnyen látszik, ha az áramvonalak vízszintesek és távolságuk \(\Delta y \), ugyanis akkor az áramlás \(|u| \approx \Delta \Psi / (\Delta y H) \) erősséggel, és a \(\Delta y H \) felületű tégla alapján \(u \Delta y H = \Delta \Psi \) térfigató folyadék halad át kégség alatt. A mélységi áramlási függvény mértékegysége tehát m³/s. Az óceáni tipikus térfigató áramerősségek legalább 1 millió m³/s nagyságúak, melyek jellemzésére bevezették a Sverdrup egységet, 1 Sv = 10¹⁰ m³/s. A \(\Psi \) függvényre vonatkozó egyenlet

\[
\frac{\partial \Psi(x, y)}{\partial x} = \frac{\text{rot}_z \mathbf{T}(x, y)}{\beta \theta_0}.
\]

Ez az összefüggés (éppúgy, mint (4.55)) azt mutatja, hogy a felszínű szélhírások meghatározzák a nagy óceáni áramlásokat. A nyírás következtében kialakuló Ekman-transzport ugyanis fel-, vagy leáramlás közvetlenül, amely viszont geosztrófikus közelítésben a (3.27) Sverdrup-reláció következtében vízszintes síkbeli elmozdulással jár.

4.6.2 Egyszerű óceánmodell

Egy óceáni medence egyszerű modelljeként tekintünk egy tégla alakú tartományt, melynek oldalhosszai \(L_x \), ill. \(L_y \). A medence alsó ele legyen a szubtrópusi vidéken, ahol a keleti szelek dominálnak, felső ele pedig a mérsékelt éghajlati övben, ahol a nyugati szelek uralkodnak (4.13 ábra). Éves átlagban a szelek okozta nyírás maximuma ill. minimuma esszen a medence északi és déli határára. A nyírás erősségének leírására általakú a

\[
\tau_x = -\tau_0 \cos \frac{\pi y}{L_y}, \quad \tau_y = 0
\]

függvényt, de hangsúlyozzuk, hogy megoldásunk tetszőleges \(\tau_x(y) \) mellett érvényben marad. Az \(L_x = 6000 \) km, \(L_y = 4000 \) km választás megfelel az Atlanti-óceán méreteinek, mely közeli a 75 és 10 fokos nyugati hosszúsági és a 15 és 50 fokos északi szélességi körök között terül el. A nyírás erősség maximuma \(\tau_0 = 0,1 \) N/m², s \(\beta \) átlagos értéke ebben a térségben \(\beta = 2 \cdot 10^{-11} \) 1/(m·s) 9.

8Általános magasságfüggő áramlás esetén \(\Psi \) a \(\psi \) áramlástól függött \(\psi \) szerinti integrálja.

9Ilyen nagy kiterjedésű tartomány leírásakor már a \(\beta \) közeli érvényesség körének határán vagyunk.
4.13 ábra: Őceáni medence és az uralkodó szelek által kifektett nyíróerők egyszerű modellje az északi félteken. Az áramvonalak mellé írt számok a Ψ mélységi áramlási függvény értékét adják Sverdrupban kifejezve $(1Sv=10^6m^3/s)$. A vastag vonal erős nyugati part menti peremáramlátot jelöl.

A mélységi áramlási függvény egyenlete ebben az esetben

$$\frac{\partial \Psi}{\partial x} = -\frac{1}{(\beta \theta_0)} \frac{d\tau_x}{dy}. \quad (4.61)$$

A jobb oldal független x-től, ezért a Ψ függvénye x-ben lineárisnak kell lennie. Ezzel nyilván csak az egyik észak-déli peremfeltétel elértethető ki. Ismerté a erős nyugati peremáramlátokra való hajlamos, válaszuk az $x = L_x$ keleti partvidék, hiszen ott az áramlás biztosan elegendően sima, s írjuk elő ott az $u = 0$ peremfeltételt. A megoldás tehát

$$\Psi(x, y) = \frac{d\tau_x}{dy} \frac{1}{\beta \theta_0} (L_x - x) = \frac{\tau_0 \pi}{\beta \theta_0 L_y} (L_x - x) \sin \frac{\pi y}{L_y}. \quad (4.62)$$

A fenti egységekkel Ψ tipikus értéke néhányosz tíz Sv (l. 4.13 ábra), mely a megfigyelt óceáni áramerősségek nagyságrendjébe esik. A modell összhangban van azzal a képpel, hogy a negatív nyírási űrszerűséggel szemlélődik leáramlást, s a Sverdrup-reláció miatt délere történő geosztrofikus áramlást hoz létre az egész medencében (az északi és déli peremek kivételével, ahol $v_y \equiv 0$).

Az nyugati partvidékben az $u = 0$ peremfeltétel nem elégtethető ki. Az áramvonalak belefutnak az y tengelyen húzódó partvonalba. A kontúrítás miatt azonban nyilván kidöntése egy délnél északra futó áramlást, de ez olyan kecskeny, hogy az adott közelítésben nem bontható fel. A nyugati partvonal mentén behúzott vastag vonal egy igen keskeny sávban futó peremáramlátot reprezentál. Itt az anyagáramnak ugyanakkorának kell lennie északfelé mint a medence más részeiben délnél. Az áramlás maximámat az $x = 0, y = L_y/2$ helyen veszi fel, ahol értéke $\Psi_{\text{max}} = \tau_0 \pi L_y / (\beta \theta_0 L_y) \approx 25 Sv$. Mivel a keleti peremen az áramlási függvény eltűnik, a teljes transzport délelőtt 25 Sv, s ezért ugyanennyit kell lennie az északra irányuló keskeny peremáramlatban. Ez az egyszerű modell meglepően jó összhangban van azzal a tényel, hogy a Golf-áramlat erőssége mintegy 30 Sv.

Ugyanez a szélnyírás egy lassan forgó bolygón olyan áramlást hozza létre, mely a medence középpontjára mindkét koordinátatengely mentén közélszimmetrikus! A Föld nyugati peremáramlata tehát annak látványos következményei, hogy a forgás gyors, a geosztrofikus közélítés jogos, s a gőrbülből adódó β-hatás is jelen van.

Az egyes sebességkomponensek:

$$u = -\frac{\tau_0 \pi^2}{\beta \theta_0 L_y H} (L_x - x) \cos \frac{\pi y}{L_y}, \quad v = -\frac{\tau_0 \pi}{\beta \theta_0 L_y H} \sin \frac{\pi y}{L_y}. \quad (4.63)$$
A délre mutató sebesség 1 mm/s nagyságrendű, a kelet-nyugati áramlás a medence szélességi körökkel párhuzamos peremén közel 1 cm/s erősségű.

A nagy óceáni körök mozgását tehát elsősorban az uralkodó szelek alakítják ki, s ezek vezetnek a 2.4 fejezetben megismert anticiklonális áramlásokhoz. Érdemes hangsúlyozni, hogy kizárólag x irányú nyírás esetén az északi és déli peremek nem feltétlenül kell partvonalak lennie, ugyanis azokon a helyeken, ahol a nyírásnak szélsőértéke van, az áramvonalak automatikusan kelet-nyugati irányúak. A valóságban ezek a nagy anticiklonális óceáni körök két ciklonálishoz csatlakoznak, melyek mérete azonban sokkal kisebb: az egyenlítői és a sarki körhöz (l. 4.14 ábra).

4.14 ábra: Az óceáni körök rendszere és az átlagos nyíróerők függése a szélességtől.

A problémát állandó mélységű világóceánt feltételezve, de a valóságos partvonalakkal és a mért átlagos szelek nyírási erősségével numerikusan megoldva a 4.15 ábrán látható áramlási képet kapjuk. Ez megegyezik a megfigyelt felszíni áramlások térképével, s a vastag vonalak egyértelműen megfelelnek a korábban említett erős nyugati peremáramlatoknak (Golf, Kuroshio, Agulhas, Nyugat-ausztráliai és Brazíliai áramlatok).

99
4.15 ábra: Az egyszerű modell kiterjesztése az állandó mélységűnek feltételezett világóceánra a valóságos partvonalak és a mért átlagos nyírasi erősségek figyelembevételével. A vastag vonalak a nyugati peremáramlátokat jelölik, s egybeesnek a valóságos peremáramlatokkal [Gill].
5. fejezet

Rétegzett közegke Áramlása

Természetes közegének, a víz és a levegő nem teljesen homogénnek, hanem függőleges rétegzettstégűek, sztratifikáltak (5.1 ábra). Hosszú idők átlagában jelentősen csökkentő sűrűségű, vízszintes rétegekből álló rendszerek kikultethetők. A természetes közegke rétegzettstégét olyan hétköznap megfigyelések bizonyítják, mint a kód, vagy a felhőréteg élesen kirajzolódó hatása, vagy a tavak egy-két méteres meleg felső rétegének nyáron jól érzékelhető elkülönülése a mélyebb hideg tartománytól (5.2 ábra). Az alsó légkör, a troposzféra rétegzettstégénél erősebb a felette elhelyezkedő sztratoszférától. A süm repülést kereső utasszállító gépek ezért választják a 11 km körüli utazási magaságot, a sztratoszféra alján. A rétegzettstég fontos következménye, hogy az adott sűrűségtől függő, bolygó mojalalja lelegési szintjét (homogén közegben a lelegési feltétel gyakorlatilag nem állítható be). Felfelé csökkenő rétegzettstégű közegben a folyadékrészek nyugalmas állapota stabil (míg homogén közegben csak marginálisan stabil). A stabilitást az adatuk, hogy a függőlegesen kimozdított részecskére reagáló mozgást vége nyugalmi helyzete körül. (5.3 ábra) Ennek frekvenciája, az Nth Brunt–Väisälä-frekvencia a sztratifikált folyadék alapvető jellemzője, s értéke annál nagyobb, minél erősebb a rétegzettstég. A rétegzettstég okozó sűrűségkülönbségek azonban a tapasztalat szerint legfeljebb néhány százalékosak (5.2 ábra), ezért a függőleges mozgások gyorsaságát a g′ = gΔρ/ρ₀ redukált gravitációs gyorsulás szabja meg, mely a légkörben kb. tiszteres, az oldalkében ezeréves redukcióit jelent. A statikus rétegzettstég tehát viszonylag gyenge: Δρ/ρ₀ ≪ 1. A Brunt–Väisälä-frekvencia négyzete a redukált gyorsulás és a folyadékmélység hanyadosasával becsülhető. A gyenge statikus rétegzettstég miatt a Brunt–Väisälä-frekvencia a hétköznap életében tapasztalatokhoz képest alacsony frekvencia, a légkörben 10^{-2}\ s^{-1}, az oldalkében 10^{-3}\ s^{-1}. Ebből az is következik, hogy a rétegzettstég szorosan kapcsolatos hidrodinamikai mozgások mindig lassúak, jellegzetes idejük több perc vagy óra nagyságrendű.

A rétegzett folyadék mozgását egy új dimenziótlan szám, az ún. belső Froude-szám jellemzi, mely a Hth vastagságú közeg U vízszintes átlagsebességű áramlásban

\[Fr' = \frac{U}{HN} \approx \frac{U}{\sqrt{gH}}. \]

A rétegzettstég az áramlás szempontjából akkor lényeges, ha a belső Froude-szám egynél kisebb. Értéke a kínzétei áramlásokban 10^{-1} - 10^{-2} körül. Természetes közegében a rétegződés tehát dinamikai szempontból lényeges, annak ellenére, hogy statikai értelmű gyenge. Ezek a feltételek könnyen biztosíthatók laboratóriumi kísérletekben is.

A nagyon kis belső Froude-számokkal megfelelő erősen rétegzett határesetben új jelenség fordul elő: az ún blokkolás. Az áramlás olyan erősen vízszintes rétegekhez kötött, hogy a folyadék az akadályokat a függőleges síkban nem képes körülfolyni (5.4 ábra). Ez a nem forgatott, rétegzett közeghez eső jelenség a forgatott, homogén közegke Taylor-oszlopaikra a megfelelője (t. 5.1 táblázat).

A rétegzett folyadék jellegzetes hullám, a belső hullám (5.5, 5.9 ábra), melyben a részecskék a terjedési irányra merőlegesen legfeljebb Brunt–Väisälä-frekvenciájú rezgést végeznek (5.6 ábra).

A háttérvonulás és periodikus domborzati egyenletleget következtelen kialakuló belső hullámok rendelkezhetnek azzal az érdekes tulajdonsággal, hogy a háttérvonulás energiájának egy részét a közeg magasabb rétegeibe juttathatják. Belső hullám keltésére csak viszonylag lassú áramlások képesek, melyekben az a frekvencia, mellyel a domborzati periodicitás megjelenik az áramlásban, kisebb a Brunt–Väisälä-frekvenciájánál. Ilyenkor a hullámfrontok a háttérvonulás irányába dőlnek, s a csoportsebesség erre meredéges, tehát jelentős felfelé mutató komponensel rendelkezik (5.15, 5.18 ábra). A jelenség a légkörben a helyétől függő (lee) hullámok kialakulását jelenti, melyek érdekes felbőlési/leállító folyamatokkal is társulnak (5.16, 5.17 ábra).

A rétegzett közeg sokszor modellezhető két egyfázisú folyadék rétegeivel (5.20 ábra). Az ilyen rendszerben tipikus az ún. baroklin mozgás, mely a belső elválasztott felület jelentős elmozdulásával jár, miközben a külső felszín változása igen csekély (5.23 ábra). Ennek hullám-megfelelő az elválasztott felület mozgásával járó belső hullám, melyet a felső rétegbeli zavar is kelthet (5.22 ábra). A kis amplitúdójú belső hullám c1 terjedési sebességének négyszete közel azonos rétegvastagságok esetén a redukált gravitációs gyorsulás és a teljes mélység szorzata: \[c_1 = \sqrt{\frac{g\rho h}{T}}. \]
A természetben előforduló belső hullámok tehát legtöbb tízszáz lassábbak a \(c_0 = \sqrt{gh} \) belső hullámoknál. Meglepő módon a belső hullámok az egyfázisú folyadék rétegei szemben áramolnak (5.21 ábra). Felfedezésükre az vezetett, hogy a torkolatok környékében a sós tengervízen néhány méter vastagságban szétterülő edészvize érkező hajók hirtelen lejékezése, "dead water"-be kerültek. Ekman adta meg ennek magyarázatát azzal, hogy energiájuk belső hullámok keltésére fordítódott.

Folytonos rétegzettsegű sékely folyadékban a belső hullámok több egyszerű típusa is jelen van, az ún. normálmódosok. Közülük az elsőben a folyadék alsó és felső fele szemben áramlik, ez tehát olyan mozgás, melyben a folyadék délnyugat felé terjedésként viselkedik. Hasonlóan, a második normálmódszorban a folyadék három olyan rétegre bomlik, melyek dinamikája alapvetően különbözik, és így tovább (5.19 ábra).

Zárt medencében, öblőkben, tavakban a belső hullámok állóhullám változatai is megjelennek a tőlengés (seiche) jelensége kapcsán. Ilyenkor a legnagyobb lehetséges hullámhossz a medence hosszának kétszerese, a lengési periodus több nap is lehet (12.1 ábra).

Rétegzett folyadékban számos nemlineáris hullám is megjelenik, melyek lineáris társaitól eltérően anyagarámmal járnak, s ezért a környezeti transzportochemikusok alapját érheto összetevői. A belső hidradikus ugrás a belső hullám c1 sebességének gyorsabban áramló réteg hirtelen megvastaggodása (5.26 ábra). Ilyen nagy sebességre a lejtőn lezsidáló folyadék tehát szert (5.26, 5.27 ábra). Mivel azonban az állapot instabil, alkalmas helyre érve a folyadék lelassul, s e később rétegvasztagsága megjön. A hidradikus ugrás helye térben rögzített (5.28 ábra). A belső torlázhullám (borne) a hidradikus ugrás egyenletes sebességgel mozog változata eredetileg nyugvó közégen. A gyorsanabb mozgó belső borne-okban a képes belső turbulenciával jár, a lassabb változatokban azonban a megemelkedett belső folyadékmetszében nagy amplitudójú hullámok jelennek meg (5.29, 5.30, 5.31 ábra). A gravitációs áramlat szerű folyadék behatolása a nyugvó ritka közeg alá, vagy hígabb folyadék felújulása a sűrűbb tetejére. Hajtóerje a sűrűségkülönbségből adódó redukált gravitációs gyorsulás (5.32, 5.33 ábra), sebessége pedig \(\sqrt{g\rho h} \), ahol h a gyorsan mozgó réteg átlagos vastagsága.
ga. A környezetünk áramlássában az ilyen mozgás fentek felet meg, s számos légkör és óceáni jelenségen megfigyelhető (5.34, 5.35, 5.36 ábra). Fügylemem méltó, hogy már egy ezerélkőnyi sürűségkülönbség is (mivel mélyben 5 fok hőmérsékletkülönbség vált ki) m/s sebességgel áramlatait hoz létre 100 m vastagságú rétegben. A tipikus légkör i sebességértékek 10 m/s. A belső szolítók a különböző sürűségi rétegek közötti elhálasztőfelület olyan kialakulásra, melyek alakjukat meghatározták a tengelyes sebességeket haladnak (5.37, 5.38 ábra). A gravitációs áramlatok akadálytal történő ütközése vagy az árammodul hatályátja ki át.

A rétegzett folyadékkbeli áramlások rendezetlen válásának alapvető mechanizmusait az ún. Kelvin–Helmholtz-instabilitás. Ez viszonylag vastag folyadékrétegek között alakul ki, ha azok vízszintes sűrűn különböző sebességeken áramlódnak. Minden sebességkülönbségeket, megtevők egy kritikus hallá mjegyzés, s az annál rövidebb hallá mjegyzés szabadon mind instabilak. Az elhálasztó felület begyűrődik, s a megterjedési felszínű hallá mjegyzés hasonló alakot vesz fel (5.39 ábra). Ez jól megfigyelhető kísérletekben (5.40, 5.32b, 5.33 ábra) és a mozgó légtérének határán is (5.41 ábra).

A rétegzett közegek hidrodinamikája új vonásokkal gazdagodik, ha olyan nagy a hőmérsékletkülönbségek lépnek fel, hogy a hővezetés nem lógfejezhető át. A konvekció az alulról történő melegítés hatására kialakuló áramlás. A nyugvó ideális folyadék a legkisebb hőmérsékletkülönbség hatására is instabil lenne, bennél feláramlások induálódnak el. A viszonylat és a hővezetés miatt áramlás csak akkor alakul ki, ha a folyadék alja és tetéje közötti hőmérsékletkülönbség egy véges küszőértékét meghalad. A küszőértéket alig meghaladó hőmérsékletkülönbségekhez szabályos térbeli szerkezet, időfüggően változnak áramlatok (5.43 ábra), melyek a hőmérsékletkülönbség növekedésével időfüggővé és egyre bonyolultabbnak válnak. A természetes közegekben a függőleges irányban előálló hőmérsékletkülönbségek a küszőértéknel több nagyságrannal nagyobbak. Az áramlást ekkor az jellemző, hogy a közeg aljáról rendezetlen módon meleg folyadékképesesek szabad alakulni, melyek gombajelzőszerű alakban ermelkednek fölé fel. Ezeket termínek nevezzük (5.44, 5.45 ábra). A légkörben, a teken felülről hűtött óceánnak, tavanak (sőt a földköpenyben is) a konvekció termikus formája játék.

Ha a hővezetéssel valamely anyag diffúziója is társul, akkor kettős diffúziós folyamatot be szerekünk. A sűrűséget alapvetően meghatározó ilyen anyag az óceáni vízben alakult, s hogy a levegőben levő vízpára. A nagyobb anyag tartalom sűrűbbé teszi a közeget, tehát ellenkező hatással van rá, mint a hőmérséklet. A hőmérséklet- és koncentrációkülönbség hatására kialakuló kettős diffúziós konvekció a két komponens versengésének következménye. Az alul hideg folyadékban is beindulhat konvekció, ha fent nagy a koncentráció. Ez a folyamat ezet az ún. só-sajak kialakulásához (12.2, 12.3 ábra), mely az óceáni sótranszport egyik fontos összetevője is. Légkori analogonja a nagy vízpáratartalmú bugyok megjelenése a felhőréteg alján (12.4 ábra). Fordított a helyzet, ha a folyadéket alulról melegítjük, de ugyanakkor a nagyobb koncentráció is lent található. A termikus konvekció ekkor gátolja a nagy koncentrációmgadás. A fűtés által kiváltott áramlás ilyenkor nem tud kiterjeszteni a folyadék teljes mélységére, hanem közeg alacsony vastagságú vízszintes rétegekre korlátozódik (12.5 ábra). Ez a rétegekre bomlás jól megfigyelhető a nyugvó tengervízen (12.6 ábra), és a jéghegyek olvadásakor is (12.7 ábra).

5.1 Folyadékok rétegzettsége

A rétegződés a gravitáció hatására alakul ki, a folyadék a legkisebb potenciális energia elérésére törekedik. A stabil rétegződésben ezért a nagyobb sűrűségű anyag kerül alacsonyabb szintre. A levegő különböző tőrésmutatóját (hőmérséklettől) rétegei néha jól megfigyelhetők a légkörben (5.1 ábra).

A rétegek rendszerint olyan közeli sűrűségűk, hogy egy folytonos \(f(z) \) átlagos sűrűségeloszlással jellemezhetők, mely csak a függőleges, z koordinátától függ. A légkör sűrűsége monoton csökken a magassággal (5.2a ábra), km-enként kevesebb mint 2 kg/m²-rel, tehát kevesebb mint
5.1 ábra: A levegő különböző sűrűségű és törésmutatójú rétegekből áll, melyek kirajzolódatnak a léghori képződményekben, mint például az urhajók fellőzése után visszamaradó kondenz-csíkokon [www.drsky.com/ing/nmcontrail.jpg; www.astro.ku.dk/~holger/].

5.2 ábra: A légkör (a) és az óceánok (b) átlagos sűrűségeloszlása (a nyomás magasságfüggvéseből adódó járulékot eltekintve). A légkör alsó rétege időnként jól keverté válík. Ebben a planetáris határáterjedésben a sűrűség közéli állandó (pontozott vonal). Jól kevert közeg az óceánok felső, ún. keveredési rétege is. Alatta gyors sűrűségváltozás következik be a termoklin zónában.

A felszíni 1.2 kg/m³ sűrűség két százalékával. A föld felszíne fölötti réteg gyakran turbulenssé vállik. Ebben a jól kevert rétegben, a planetáris határáterjedésben a sűrűség közéli állandó. A planetáris határáterjeg vastagsága évszak és napszak függvénye, de átlagosan 1 km körüli kínál lehetőség. Az óceáni sűrűségeloszlás (5.2b ábra) a légkör síné szinte a fordítottja. A felső, mintegy 50 – 100 m-es keveredési rétegben, mely általában egybeesik az Ekman-féle határáterjeggel, alig változik a sűrűség, utána következik a legjelentősebb sűrűség-, és hőmérsékletgrandiánsnyelv változás, 1 km-rel a termoklin zóna a több száz méteres, esetleg 1 km-es mélységig, melyet egy igen lassú sűrűség-változás követ. A visszakapcsolás a termoklin zóna felső és alsó határa között is csak néhány kg/m³, azaz a felszíni 1024 kg/m³ sűrűségnek csak néhány évtizede. A tavakban kialakuló sűrűségeloszlás a tengeri eloszlásnak kicsinyített változata, ahol a termoklin zóna a néhány méteres mélységig is feljuthat.

Laboratóriumban csökkenő koncentrációjú só-, vagy cukoroldatok egymásra rétegezésével sem
érhető el 10 százaléknál sokkal nagyobb sűrűségkülönbség a végső telítettségek miatt. Igaz azonban, hogy ez néhány szor 10 cm-en is eloszlhat, tehát a gradiens lehet nagyobb, mint a természetben. Dinamikai szempontból természetesen nem a gradiens erősségé, hanem annak az áramlási paraméterekkel kapcsolatba hozott dimenziótlan kifejezése lesz fontos.

Ha néhány, viszonylag vastag és közel állandó, de egymástól eltérő sűrűségű réteg helyezkedik el egymás fölött, két, három, stb. réteg rétegzetségéről beszélünk. Ilyenkor a \(\vec{g}(z) \) eloszlás szakaszonként konstans. Első közlekedésben az öccséni és tavi vizek két rétegűnek tekinthetők: a kerevedési tarsomány és az alatta elhelyezkedő homogénnek gondolt sűrűbb folyadék együttesének. A légkörről gyakran jelentős sűrűségugrások alakulnak ki, de a planetáris határréteg és a fölött elhelyezkedő légréteg is modellezhető két rétegű folyadékként. Akár a folytonos, akár a diszkret eset ól van is szó, a jellegzetes \(\Delta \rho \) sűrűségkülönbség sokkal kisebb a \(\rho_0 \) átlagos sűrűségnél:

\[
\Delta \rho \ll \rho_0. \tag{5.1}
\]

E statikus értelmben enyhe rétegzetség is már új jelenségekkel jár, melyek homogén folyadékból nem fordulhatnak elő.

A rétegzett folyadék dinamikája érdekes párhuzamba állítható a forgatott homogén folyadékéval. Ezért egyelőre a folyadék sejletéséhez nem tételezzük fel, és a Föld gőrbületét sem vesszük figyelembe, tehát más oldalról kezdjük a hidrodinamika vizsgálatát mint az első fejezetben. A közlekedéskédelédík kialakított rendszerehez a következő fejezetben térünk vissza, ahol a forgatott sejt rétegzett folyadék nagy kiterjedésű Föld felszínű mozgásait tanulmányozzuk majd.

5.2 A Brunt–Väisälä-frekvencia

Tekintsünk egyelőre egy folytonos \(\vec{g}(z) \) sűrűségeloszlású, nyugalomban levő folyadékot. Ha a \(z \) szintről egy egységnyi térforrát gyakorlatban kísérő kimosdítunk és a \(z + \Delta z \) szintre juttatunk, akkor az ott nem marad nyugalomban, hiszen más sűrűségű környezetbe került, s a rá ható felhajtóerő megváltozott (5.3 ábra). A folyadék összenyomhatatlansága azt jelenti, hogy a térforrát a mozgás során is egységnyi marad, a részecské sűrűsegé az új szinten is \(\vec{g}(z) \), a környezeté viszont \(\vec{g}(z + \Delta z) \). Arkhimédesz tétele értelmében a súly a kisörített folyadék \(g \vec{g}(z + \Delta z) \) súlyával csökkent, tehát az eredő erő

\[
g(\vec{g}(z + \Delta z) - \vec{g}(z)) = g \frac{d\vec{g}(z)}{dz} \Delta z. \tag{5.2}
\]

A mozgásszegyenlet

\[
\ddot{\zeta} = - \frac{g}{\vec{g}(z)} \frac{d\vec{g}(z)}{dz} \Delta z. \tag{5.3}
\]

Ha a sűrűség felfelé csökken, azaz a gradiens negatív, akkor akár milyen irányú is a \(\Delta z \) kitörés, a gyorsulás mindig vele ellentétes. Így kicsit kitérősekre harmonikus rezgés alakul ki a \(N(z) \) (általános esetben magasságfüggő frekvenciával), ahol

\[
N^2(z) = - \frac{g}{\vec{g}(z)} \frac{d\vec{g}(z)}{dz}. \tag{5.4}
\]

\(^1\)Az összenyomhatásságot is figyelembe vevő gondolatmenetet a 12.3 fejezet mutatja be.
5.3 ábra: Lefelé növekvő sűrűségű sztratifikáció esetén a nyugalmi állapotából felfelé kimozdított összenyomhatatlan folyadékleme a saját sűrűségénél ritkább közegbe kerül, az erők eredője lefelé hat. Lefelé mozdítva sűrűbb közegbe kerül, a rá ható erők eredője felhajtó hatású. A nyugalmi állapot stabil, a körülféke kialakuló rezgések frekvenciája a N Brunt–Väisälä-frekvencia.

rezgés nem is alakulhat ki. Ugyanakkor (5.3) azt is mutatja, hogy pozitív sűrűség-gradiens imagináris frekvenciára vezet, a kitértett réseccse egyszerűbb kerül eredeti szintjétől, azaz a főfelé növekvő sűrűségi rétegződés instabil.

A sztratifikáció stabilítása azt is jelenti, hogy minden folyadékrészecské, szennyeződés, szonda vagy bolya függőleges mozgása során egyértelműen megtalálja a maga sűrűségének megfelelő szintet, s ha ommit kimozdul, akkor vissza is tér.

A H vastagságú, $\Delta \rho$ sűrűségkülönbségű közegben a Brunt–Väisälä-frekvencia négyzete az

$$N^2(z) \approx -g \frac{\Delta \rho}{\rho_0} \frac{1}{H}$$

kifejezéssel is közelíthető. Itt megjelent a

$$g' \equiv g \frac{\Delta \rho}{\rho_0}$$

ún. redukált gravitációs gyorsulás. Az elnevezés arra utal, hogy a felhajtóerő következtében a súly kisebb a vákuumbeli. A sűrűségkülönbség kicsinységét kifejező (5.1) feltétel szerint

$$g' \ll g,$$

azaz természetes közegéinkben a redukció jelentős. A rétegzett folyadék függőleges irányú mozgásait a redukált g' szabályozza, s ezért azok jóval $lassabbak$ a szabad felszínű mozgásoknál.

A Brunt–Väisälä-frekvencia tipikus értéke mind a légkörben, mind az oceánokban $N = 10^{-2}$ 1/s körüli, mely $T = 2\pi/N = 10$ perc körüli periódusnak felel meg. Az oceáni legnagyobb érték a termoklin zónában alakul ki. Itt 2,5 ezredél relatív sűrűségváltozással és 600 m-es rétegvastagsággal számolva $N = 6 \cdot 10^{-3}$ 1/s frekvenciát kapunk ($T \approx 17$ perc). A mélyoceáni átlagos érték ennél kisebb: $N = 10^{-3}$1/s ($T = 15$ óra). A troposzférali Brunt–Väisälä-frekvencia a $\Delta \rho/\rho_0 = 0,2$ és $H = 10$ km értékekkel beszületethet meg, s $N = 1,4 \cdot 10^{-2}$ 1/s-ot eredményez ($T \approx 7$ perc). Az erősebb rétegzettőségi sztratofózában a Brunt–Väisälä-frekvencia két-háromszor nagyobb. Laboratóriumban ($\Delta \rho/\rho_0 = 0,1$ és $H = 1$m) N megközelíti az 1/s-ot, mely néhány másodperces T visszatéréstől időt jelent.
5.3 A hidrodinamikai egyenletek kis sűrűségválogatás esetén, a Boussinesq-közélítés

A természetes kőzegek rétegzettsége, mint láttuk, csak néhány százaléki sűrűségválogatást enged meg. Ezért nincs szükség az összenyomható folyadékok mozgását megadó teljes hidrodinamikai egyenletre, mely pl. hang- vagy lőkeshullámokat is leír, hanem elegendő a sűrűség-változásokat vezető rendben figyelembe venni. Ez az ún. Boussinesq-közélítés keretében tehető meg.

A közélítés alapfeltéve, hogy a teljes sűrűség mindig írható, mint

\[\varrho(r, t) = \varrho_0 + \varrho'(r, t), \quad |\varrho'(r, t)| < < \varrho_0, \]

ahol \(\varrho_0 \) egy konstant, helytől és időtől független referencia-sűrűség, pl. a troposzféra vagy az óceánok átlagos sűrűsége. Ehhez képest a \(\varrho''(r, t) \) sűrűségeltérés minden helyen és pillanatban kicsi, összhangban az átlagos sűrűségkülönbségre vontakozó (5.1) megfigyeléssel. Mivel forgatott rendszerekben nemcsak függőleges rétegzettség alakulhat ki, hanem ferde is (ami persze nem feltétlenül stabil), és szeretnénk, hogy az alapegyenleteket majd forgatás mellett is érvényben maradjanak, az esetleges \(\varrho(z) \) egyensúlyi rétegzettségét az (5.8) felbontás nem veszi figyelembe.

Az anyagmegmaradást kifejező (1.21)

\[\frac{d\varrho}{dt} + \varrho \text{ div} \vec{v} = 0 \]

kontinuitási egyenlet (5.8) értelmében:

\[\frac{d\varrho''}{dt} + \varrho'' \text{ div} \vec{v} + \varrho_0 \text{ div} \vec{v} = 0. \]

A \(\varrho'' \) sűrűségválogatások kicsínítése miatt az utolsó tag elemei, pl. \(\varrho_0 \partial u / \partial x \) jóval nagyobbak, mint az elsők, ezért az utolsó tagnak önmagában is el kell tűnnie,

\[\text{div} \vec{v} = 0. \]

Az áramlás tehát a sűrűségváltozások ellenére is divergenciamentes marad. Ennek egyik fontos következménye, hogy a visközus tag továbbra is a sebesség Laplace-operátorával fejezhető ki (l. (1.19)) a Navier-Stokes-egyenleten. A (5.10) egyenletből az következik, hogy \(d\varrho'' / dt \) kicsi a divv-ben felépő tagokhoz, pl. \(\varrho_0 \partial u / \partial x \)-hez képest.

Hövözési és diffúziós folyamatok a folyadéknak \(\varrho'' \) sűrűségének lassú változására vezetnek. Érdemes az ezen folyamatokkal kapcsolatos jellegzetes távolsgat megbecsülni. A diffúzióban résztvevő két, kezdetben közeli részecské (pl. szennyezőanyag) átlagos \(\varrho \) távolsága \(t \) idő után nyugvó közegben \(\varrho = \sqrt{2Dt} \), ahol \(D \) a diffúziós állandó. A sós diffúziós állandója vízben 1,5 \(10^{-9} \) m²/s, mellyel \(\varrho 1 \) nap után 1,6 cm, de még egy év alatt is csak 30 cm! A hődiffúziós állandó vízben mintegy százszor nagyobb, a vízgáz diffúziós állandója levegőben pedig ismét százszor. Az utóbbival tehát napi 1,6 m-es elmozdulás jár. Még a turbulencia révén felerősödött mintegy 5 m²/s-os levegőbeli diffúziós együttható (l. 7.2 fejezet) is csak napi 300 m-es távolsga vesz. A diffúziós és hővezetési folyamatok tehát a planetáris határáttében és az óceáni keverési rétegben lényegesek, de annál nagyobb méretében a több napos időskálán is elhanyagolhatóak.

A nagyleptékű folyamatokban tehát

\[\frac{d\varrho''}{dt} = 0. \]

\[\text{5.17, 12.3 fejezet} \]
A folyadékelem mozgása során megkívánja sűrűségét\(^3\), hiszen \(d/dt\) a teljes deriváltat jelenti.

Az (5.8) közöltés szellemében a Navier–Stokes-egyenleten minden olyan kifejezésben, mely a teljes \(\varrho\) sűrűséget tartalmazza, vezető rendben \(\varrho_0\)-at írhatunk. Az egyedű kivétel a függőleges irányú sebesség, ugyanis annak egyenletében a felhajtóerő alapvető szerepet játszik. Válasszuk le ezért a \(\varrho_0\) sűrűséghez tartozó statikus \(p_0(z) = p_0 + \varrho_0 g z\) eloszlást a teljes nyomásról:

\[
p(r,t) = p_0(z) + p''(r,t).
\]

(5.13)

Az (1.23) Navier–Stokes-egyenleten a nyomási erő és súly eredője: \(-\text{grad} p - \varrho g\mathbf{n}\) úgy is írható, mint \(-\text{grad} p'' + \varrho_0 \mathbf{n} - \varrho g\mathbf{n}\), azaz kifejezhető a sűrűség-, és nyomásáderzéssel. A Navier–Stokes-egyenlet így a

\[
\frac{dv}{dt} = -\frac{1}{\varrho_0} \text{grad} p'' - \frac{\varrho}{\varrho_0} g'' \mathbf{n} + \nu \mathbf{v}
\]

(5.14)

alakot ölti. Itt a \(\nu\) kinematikai viszkozitást a \(\varrho_0\) referenciais sűrűséggel képezziük. A jobboldalon a gravitációs gyorsulás helyett a \(g''\varrho_0//\varrho_0\) redukált gyorsulás jelenik meg ((5.6) lokális megfelelője). A fenti (5.11)-(5.14) egyenletek írják le a rétegezett folyadék mozgását Boussinesq-közöltésben. Ideális folyadékra adiabaticus mozgást írnak le, melynek során hőkőzles nem történik, a folyadéklemelem entrópiája állandó\(^4\).

A rétegezett folyadék barokkin, vagyis mozgása során az állandó sűrűségű és állandó nyomású felületet nem esnek egybe. Az olyan folyadékok, amelyekben az említett felületek egybeesnek (pl. összenyomhatatlan homogén folyadék) barotrópok. A baroklinitás fontos következménye az, hogy a sűrűség-inhomogenitások okozta térzogi erők a közegre forgatónyomatéket fejtenek ki. Ezért a cirkuláció még az ideális, nem forgatott, rétegezett folyadékban sem állandó.

5.4 A hidrodinamikai egyenletek függőleges rétegezettiség esetén

Függőleges rétegezettiség esetben \(\bar{\varrho}(z) - \varrho_0\) is része a (5.8)-ban definiált \(\varrho''\) sűrűségeltéréseknak. Ilyenkor azonban célszerűbb a \(\bar{\varrho}(z)\)-től való eltérést megadó \(\varrho(r,t)\) ingadozást használni, azaz azt írni, hogy

\[
\varrho = \bar{\varrho} + \varrho'' = \varrho_0 + \varrho''.
\]

Mivel \(\bar{\varrho}(z)\) stationárius eloszlás, melyhez áramlás nem tartozik, a \(\varrho''\) ingadozást dinamikai sűrűségnek nevezik, hiszen mozgás kialakulásával kapcsolatos.

A \(\varrho'' \equiv \bar{\varrho}(z) - \varrho_0\) sűrűségeltéréssel áramlás nem jár, \(\mathbf{v} = 0\). A hozzá tartozó \(p'' = \bar{p}(z)\) nyomást (5.14) alapján a

\[
0 = -\frac{1}{\varrho_0} \text{grad} \bar{\varrho} - g \frac{\varrho - \varrho_0}{\varrho_0} \mathbf{n}
\]

(5.16)

hidrosztatikai összefüggés határozza meg. Mozgást nyilván a \(\bar{\varrho}, \bar{p}\) eloszlásoktól való eltérés hozhat csak létre. Vezessük be ezért a

\[
p(r,t) \equiv \bar{p}(z) + p''(r,t) = p_0(z) + p''(r,t)
\]

(5.17)

\(^3\)Ezt a Brunt–Väisälä-frekvencia levezetésében ki is használtuk.

\(^4\)Homogén közegben a sűrűség egyértelmű kapcsolatban van a \(T\) hőmérséklettel. Kies változásokra a \(\varrho = \varrho_0(1 - \alpha T''\text{)}\) állapotegyenlet érvényes, ahol \(\alpha\) a hőátlagú együttátható, és \(T'' \equiv T - T_0\) a \(T_0\) referenciahőmérsékletű hőmérsékletet használjuk. A sűrűségét \(\varrho'' = -\varrho_0 \alpha T''\) adja meg. A \(T''\) hőmérsékletengedezés (3.12) alapján a \(dT''/dt = 0\) dinamikai egyenlet érvényes.
felbontással a p' dinamikai nyomást, mely az (1.19) egyenlettel definiált dinamikai nyomás átalakíthatása (homogén közegben $\bar{p}(z) = 0$ és $p' = p''$). Az (5.16) összefüggés miatt a p' dinamikai nyomás és a $\bar{d} = \bar{q} - \bar{n}$ dinamikai sűrűség (l. (5.15)) éppúgy kielégíti a mozgásgegyenletet, mint p'' és \bar{d}'.

A függőleges rétegzettségű folyadék egyenleti tehát

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = - \frac{1}{\partial_0} \nabla p' - \frac{1}{\rho_0} \frac{\partial \bar{d}}{\partial n} + \nu \Delta \mathbf{v}, \quad \text{(5.18)}$$

$$\frac{\partial \bar{d}}{\partial t} + (\mathbf{v} \cdot \nabla) \bar{d} = - w \frac{d\bar{n}}{dz} \equiv w \frac{\rho_0}{g} N^2(z), \quad \text{(5.19)}$$

$$\text{div} \ \mathbf{v} = 0. \quad \text{(5.20)}$$

A \bar{d}'-re vonatkozó (5.12) sűrűségegyenlet \bar{d}'-re történő átírásában felhasználható, hogy \bar{d} csak a függőleges koordinátától függ, s behelyettesíthető a Brunt–Väisälä-frekvencia definiójáját. A dinamikai sűrűség kicsinysége ellenére ez egy nemlineáris egyenletrendszer, mely minden fontos, függőleges rétegzettséggel kapcsolatos jelenséget leír.

5.5 A dimenziótlan alak, a belső Froude-szám

Annak megbeosztására, hogy mikor játszik egy *dimenziósban* lényeges szerepet a rétegzettség, érdemes a függőleges sztratifikációjú eset egyenletét dimenziótlan alakba írni. Mérjük a vízszintes síkbeli távolságot valamilyen L jellemző kiterjedés egységében, a függőlegest a folyadék H mélysége, a vízszintes sebességet pedig a U karakterisztikus sebesség egységében. Az időegység tehát L/U. A dinamikai nyomás mértékegységét $\rho_0 U^2$-nak választjuk. A \bar{d}' dinamikai sűrűség nagyságrendjét az adja meg, hogy a \bar{d}'/ρ_0 reduált gravitációs gyorsulás összemérhető a dinamikai nyomásból származó $(1/\rho_0) \partial p'/\partial z$ függőleges irányú gyorsulással (l. (5.15)). \bar{d}' tipikus értéke ezért $\rho_0 U^2/(gH)$. A W karakterisztikus függőleges sebesség nagysága az (5.19) egyenlet alapján a dinamikai sűrűség időderiváltja osztva $\rho_0 N^2/g$-vel, tehát

$$W = \frac{U^3}{LHN^2}. \quad \text{(5.21)}$$

Itt N a Brunt–Väisälä-frekvencia átlagos értéke.

Az

$$x, y, z \rightarrow Lx, Ly, Hz, \quad \mathbf{u} \rightarrow U \mathbf{u}, \quad w \rightarrow Ww,$$

$$t \rightarrow \frac{L}{U} t, \quad p' \rightarrow \rho_0 U^2 p', \quad \bar{d}' \rightarrow \frac{\rho_0}{gH} \bar{d}' \quad \text{(5.22)}$$

áthelyettesíthető a

$$\frac{d\mathbf{u}}{dt} = - \nabla p' + \frac{1}{Re} \Delta \mathbf{u}, \quad \text{(5.23)}$$

$$\frac{dw}{dt} = - \frac{1}{PrRe} \left(\frac{\partial \bar{d}'}{\partial z} + \bar{d}' \right) + \frac{1}{Re} \Delta w, \quad \text{(5.24)}$$

$$\frac{d\bar{d}'}{dt} + (\mathbf{u} \cdot \nabla) \bar{d}' = w \quad \text{(5.25)}$$
dimenziótlan egyenleteket kapjuk. A divergencia-mentesség alakja változatlan. Megjelent egy új dimenziótlan szám, az

\[
Fr' = \frac{U}{HN}
\]

(5.26)

belső Froude-szám. Az ideális, azaz sűrűlődásmentes, rétegezett folyadék dinamikáját egyetlen szám, a belső Froude-szám szabályozza. Két rétegzett közegbeli áramlás akkor lehet hasonló, ha belső Froude-számuk azonos.

A belső Froude-szám jelentése és a (1.27)-ben definiált (külső) Froude-számhoz való hasonlósága világossá válik, ha a Brunt–Väisälä-frekvencia négyszéletét a teljes folyadékmélységben kialakuló \(\Delta \rho \) sűrűségkülönbséggel becsüljük (5.5), mellyel

\[
Fr' \approx \frac{U}{\sqrt{g\frac{\Delta \rho}{\rho_0}H}} = \frac{U}{\sqrt{g'\bar{H}}}
\]

(5.27)

A belső Froude-szám tehát ugyanúgy fejezhető ki a sűrűségkülönbség következtében kialakuló (5.6) reduált gravitációs gyorsulással, mint a külső (1.27) Froude-szám a teljes \(g \)-vel.

A belső Froude-szám négyszete tekinthető úgy, mint a folyadék átlagos \(\overline{\rho}U'^2 \) kinetikus energia-jának a rétegződés teljes átrendeződéséhez szükséges \(\Delta \rho \bar{H} \) potenciális energiához való viszonya:

\[
Fr'^2 = \frac{\text{mezgási energia}}{\text{rétegzett egyéni helyzeti energia}}.
\]

(5.28)

Látjuk, hogy \(Fr' \) egyenlő az áramlás sebességnél és a rétegzett folyadékbili belső gravitációs hullámok sebességének az aránya.

A rétegzettsség hatása akkor erős, ha a belső Froude-szám \textit{kicsi}, azaz ha

\[
Fr' << 1.
\]

(5.29)

Ez annak a \textit{dinamikai} feltétele, hogy az áramlásban lényeges szerepe legyen a sztratifikációknak, s nincs ellentmondásban azzal, hogy a rétegzettsség \textit{statikus} értelmében (1. (5.1)) gyenge.

A belső Froude-szám értéke légköri és oceani példában \(10^{-1} - 10^{-2} \) körüli. A termokin zónabeli \(N = 6 \cdot 10^{-3} \text{ s}^{-1} \) értékekkel, \(H = 600 \text{ m} \) mélységgel, és a homogén közégre jellemzőként asszabb, \(U = 0,1 \text{ m/s-os sebességgel számolva} \ Fr' = 3 \cdot 10^{-2} \). A légköri becsles \(U = 10 \text{ m/s-} \text{mal} \ (N = 10^{-2} \text{ s}^{-1}, H = 10 \text{ km}) \ Fr'^2 = 0,1 \). Ugyanezek az értékek laboratóriumban \(N = 1 \text{ s}^{-1}, H = 1 \text{ m} \) \(U = 3 - 10 \text{ cm/s-os sebességgel kaphatók meg.} \)

Érdemes megemlíteni, hogy a függőleges sebesség (5.21) becslése a belső Froude-számmal írható úgy is, mint

\[
\frac{W/H}{U/L} = Fr'^2.
\]

(5.30)

Ez az új dimenziótlan szám tehát meghatározza, hogy milyen erős lehet a feláramlás, pontosabban a \(\partial w/\partial z \) derivált értéke a vízszintes sűrűbeli divergencia \(U/L \) nagyságrendjéhez viszonyítva. Annak ellenére, hogy a vízszintes és függőleges méretek megkülönböztették, a folyadék sebességét nem tételezhetünk fél. A belső Froude-szám kicsinosége, az erős rétegzettsség azonban éppolyan típusú megszorítást ír elő a \(W/H \) viszonyra, mint a sebesség. Erősen rétegzett folyadékbek a feláramlások gyengék.

5.6 Analógia a forgatott folyadékkal

A belső Froude-szám (5.26) definiációja hasonló a Rossby-szám (1.3) kifejezéséhez. Mindkettőben a vízszintes sebességet hasonlítjuk össze egy távolság és frekvencia szorzatával. A
5.4 ábra: A blokkolás jelensége: igen erősen rétegzett folyadékban a mozgó test maga előtt tolja az egész folyadékréteget. A folyadék nem folyja körül az akadályt, mert a függőleges sebességkomponens elhanyagolhatóan kicsi. Ez a Taylor-Proudman-tétel analógánja rétegzett folyadékokra [Tritton].

Rossby-számban azonban a vízszintes, a Froude-féleben pedig a függőleges méret jelenik meg. Ebben kifejeződik a Coriolis-erő és a gravitációs erő irányának különbözősége.

Az erős rétegezettség, épügy, mint a gyors forgatás, az áramlást kétdimenziósá teszi. Lát- szik ez az (5.30) összetételből is, hiszen \(Fr' \rightarrow 0 \) mellett \(W \rightarrow 0 \). Dinamikailag ezt az \(Fr'^2 \)-tel megszorzott (5.24) egyenlet fejezi ki, melyben az \(Fr' \rightarrow 0 \) határesetben a függőleges hidrodinamikai gyorsulás elhanyagolhatóvá válik, s a vízszintes peremek miatt a függőleges sebesség eltűnik: \(w \equiv 0 \). A felső légkörben, a sztratoszférában ezért mozognak a felhők vékony vízszintes síkokban. Ha egy erősen rétegezett folyadékban véges vastagságú akadályt, pl. vízszintes tenge- lyű hengert mozgatunk, akkor az a vastagságának megfelelő folyadékréteget maga előtt tolja, ill. maga mögött húzza, anélkül, hogy a közeg az akadályt körülfordítja (5.4 ábra). Az adott réteg tehát együtt mozog az akadálytal. Ez az ún. blokkolási jelenség (blocking) homogén folyadékban sohasem fordul elő, s a Taylor-öslopop analógánja rétegezett közegekben.

Bár mind a gyors forgatás, mind az erős rétegezettség kétdimenziós viselkedésre vezet, az előbbi függőleges, az utóbbit pedig vízszintes síkbeli struktúrák kialakulásával jár. Ezért az analógia teljesé tételéhez (5.1 táblázat) ezen irányok felcserélése is szükséges.

<table>
<thead>
<tr>
<th>RÉTEGZETT</th>
<th>N</th>
<th>függőleges irány</th>
<th>H</th>
<th>Fr’</th>
<th>blokkolás</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORGATOTT</td>
<td>2/Ω</td>
<td>vízszintes irány</td>
<td>L</td>
<td>Ro</td>
<td>Taylor-öslop</td>
</tr>
</tbody>
</table>

5.1 táblázat: A rétegzett, nem forgatott és forgatott, homogén folyadékok jellemzői közötti megfeleltetés

Végül megjegyezzük, hogy amint az előző fejezetbeli példák is mutatták, a természeti áram- lások nem nagyon erősen rétegezettek, hiszen belső Froude-számuk nem rendkívül kicsi. Sőt ezen számok nagyságrendje megegyezik a tipikus Rossby-számkével, amiből az következik, hogy a környezeti áramlások szempontjából a rétegezettség és a forgatás összemerődő fontossága (l. 6.4 fejezet).

5.7 Belső hullámok

5.7.1 Síkhullám megoldások

A rétegzett folyadék kollektív mozgásában a Brunt–Väisälä-frekvenciájú rezgés megfelelője egy speciális hullámfajta, a belső hullám. A peremektől távol, a (5.18)-(5.20) hidrodinami-
kai egyenleteket kis amplitudójú mozgásra alkalmazva, a másodrendűen kicsiny advektív gyorsulások elhanyagolhatók, s egy lineáris változathoz jutunk. A megoldást az egyszerűség kedvén általánosan eltolásinvariánsnak tetelezve, kereshetünk sfiklók alakban. Tételezzük fel, hogy $$(u, w, \tilde{p}/\mu_0, -g/(\mu_0 N)) = (u_0, w_0, P_0, r_0) \exp(\gamma t - i k_x x - i k_z z)$$. Itt $\mathbf{k} = (k_x, k_z)$ a hullámszám vektora, γ a frekvencia. Ezzel elhanyagolható viszkozitás esetén, állandó Brunt–Väisälä-frekvenciát feltételezve az

$$i \omega_0 u_0 = +i k_z P_0, \quad i \omega_0 w_0 = +i k_x P_0 + N r_0,$$

(5.31)

$$i \omega_0 r_0 = -N w_0, \quad k_z u_0 + k_x w_0 = 0$$

(5.32)

polarizációs egyenletekhez jutunk.

Vegyük észre, hogy ez ekvivalens a tehetselésű hullámokra kapott (1.64)-(1.67) rendszerrel, ha ott a viszkozitást elhanyagoljuk, és az

$$u_0 \rightarrow u_0, \quad k_x \rightarrow k_z, \quad w_0 \rightarrow u_0, \quad k_z \rightarrow k_x, \quad v_0 \rightarrow r_0, \quad 2\Omega \rightarrow N$$

(5.33)

helyettesítést alkalmazzuk. Ez megfelel az előző fejezetben említett iránycserének. Az γ irányú sebesség helyett most a sűrűségváltozás szerepel, s 2Ω szerepé változik a Brunt–Väisälä-frekvencia veszi át.

Nemtriviális megoldás csak akkor létezik, ha

$$\omega_0 = \pm N \frac{k_z}{k} = \pm N \cos \theta,$$

(5.34)

ahol θ a \mathbf{k} vektor vízszintes tengellyel bezárt szöge. Ez a belső hullámok diszperziós relációja (5.5 ábra). A \pm előjel azt fejezi ki, hogy minden hullámszámvektorhoz tartozik egy vele azonos és ellentétes irányban haladó hullám is. A $\cos \theta$ tényező mutatja, hogy a hullám frekvenciája felülről korlátozott: nem lehet nagyobb az N értéknél : $|\omega_0| \leq N$. Ilyen hullámok tehát csak rétegbe fordulhatnak elő, de ott sem rezeghetnek gyorsabban N-nél. A legnagyobb frekvenciájuk a vízszintes irányába haladó hullámok ($k_z = 0$), melyekben a folyadékreszecskék függőlegesen mozognak a Brunt–Väisälä-frekvenciával. Ennél gyorsabban rezgő belső hullámok nem gerjeszthetők. Gyors gerjesztés esetén ugyanis a részecskékhez nincs idejük saját, N frekvenciájú rezgést kialakítására, ezért az energiaadás lokális marad és nem vezet hullámtorjedésre.

A (5.32) egyenletet látjuk, hogy a sebességtér merőleges a hullámszámvektor irányára, a hullám transzcélerészet (5.6 ábra). A folyadéklemek tehát a vízszintességgel $\pi/2 - \theta$ szöget bezáró "lejtő" mozognak A gravitációs gyorsulás lejtő irányú komponense $g \cos \theta$, s a rezgés frekvenciája ezért a Brunt–Väisälä-frekvencia $g \cos \theta$-szorosa. A polarizációs egyenletek szerint, ha u_0, w_0 valós, akkor P_0 is az, de r_0 imaginárius. Ez azt jelenti, hogy a nyomássz. és sűrűségmaximumok negyed periódus különbségkel követik egymást.

5.7.2 Fázis és csoportsebesség

A belső hullámok fázissebessége az x és z irányban

$$c_x = \frac{\omega_0}{k_x} = \pm N \frac{1}{k}, \quad c_z = \frac{\omega_0}{k_z} = \pm N \frac{k_z}{k_x}$$

(5.35)

Az energia terjedését megadó c^e csoportsebességre azt kapjuk, hogy

$$c^e_x = \pm N \frac{k_x^2}{k^3}, \quad c^e_z = \mp N \frac{k_x k_z}{k^3}$$

(5.36)

5 Az összefüggős y irányban is terjedő hullámokra is érvényes, ha θ a hullámszámvektorának a vízszintes síkkal bezárt szögét jelöli.
5.5 ábra: Belső hullámok diszperziós relációja rögzített k_z függőleges hullámszám esetén. A $N \to 2\Omega, k_x \to k_z$ ($\sin \theta \to \cos \theta$) cserével a tehetszetlenségi hullámok diszperziós relációját kapjuk (1.15 ábra).

A csoportsebesség abszolútértéke $N \sin \theta / k$, iránya pedig merőleges a k vektorra. Az első szögnegyedben fekvő hullámszámvektor ($k_x, k_z > 0$) esetén a pozitív frekvenciájú hullám csoportsebessége a k-től jobbra lefelé mutat (5.6 ábra). Vízszintes terjedés ($k_x \to 0$) esetén a Brunt–Väisälä-frekvenciájú rezgés magától is fennmarad, az ilyen irányú hullámmal ezért energia nem halad, csoportsebessége eltűnik. A függőleges irányú terjedés határesetében ($k_x \to 0$) a hullámszám megszűnik: $\omega_0 \to 0$, összhangban a blokkolási jelenséggel.

5.6 ábra: A c^* csoportsebesség és k hullámszámvektor viszonya belső hullámban. Az energia mindig a hullámfrontokkal párhuzamosan terjed, tehát k-ra merőleges. Az, hogy jobbra vagy balra mutat, a fázissebesség (frekvencia) előjelétől függ. A részecske mozgás a hullámszámvektora merőleges sikban történik.

Ha a folyadékot valamilyen kis méretű test $\omega (0 < \omega < N)$ frekvenciájú mozgatásával gerjesztjük, akkor a belső hullámok átveszik ezt a frekvenciát: $\omega_0 = \omega$, és $\theta = \pm \arccos(\omega / N)$ szög alatt haladnak az x tengelyhez képest. A belső hullám tehát erősen anizotróp módon terjed. A csoportsebesség vektorok $\pm \theta$ szöget zárnak be a függőleges tengelyel (5.7 ábra). Ezekben az irányokban megváltozik a törésmutató, s az ergiaterjedés folyamata jellegzetes X alakzatot rajzol ki.

A gerjesztő szögszélesség növelésekor az energia terjedési iránya egyre közélebb esik a függőlegeshez, a kialakuló X alakzat egyre meredeklebb, s $\omega_0 = N$-re eltűnik. Mindez jól látható
5.7 ábra: Pontszerű, $|\omega| < N$ frekvenciájú forrásból induló belső hullámok és csoportsebességeik lehetséges irányai.

laboratóriumi kísérletekben (5.8 ábra). Belső hullámok keltette mintázat gyakran figyelhető meg felhőképeken is (5.9 ábra).

![Image](a) ![Image](b)

5.8 ábra: Kismértű henger ω frekvenciájú mozgatásával gerjesztett belső hullámok. Jól megfigyelhető a törésmutató változása egy X alakú tartományban, mely az energia terjedési irányának felel meg. Nagyobb gerjesztési frekvenciára (jobb oldali kép) az X alak meredekebb (v.ö. 1.20 ábra).

5.7.3 A törési törvény, elhajlás, inverzió

A belső hullámok különböző Brunt–Väisälä-frekvenciájú közegek határán megtörnek. A törési törvény abból a megszorításból adódik, hogy a hullám frekvenciája nem változik. Ha az N Brunt–Väisälä-frekvenciájú közegben a síkhullám a vízszintessel θ szöget zár be, akkor az N' Brunt–Väisälä-frekvenciájú szomszédos közegbe történő áthaladás után az új θ' szögre (5.10 ábra) igaz, hogy

$$N \cos \theta = N' \cos \theta'.$$

(5.37)
5.9 ábra: A belső hullámok időnként érdekes felőlakok kialakulására vezetnek [www.wolkenatlas.de/wolken/wol11403.htm].

A nagyobb Brunt-Väisälä-frekvenciájú közegben tehát a szög koszinuszja kisebb, az erősebben rétegzett közegbe lépve hullámszám-, (csoportsebesség-) vektor a függőleges (vízszintes) felé törlik.

\[
N' < N
\]

\[
\theta' \quad \theta
\]

\[
N, \omega_0 \quad k
\]

5.10 ábra: A belső hullám terjedési iránya (hullámszámvektorának iránya) megváltozik két különböző Brunt-Väisälä-frekvenciájú közeg határán. A gyengébb rétegezettsgű közegbe érve a hullám a vízszintes felé törik. A szaggatott vonal a visszavert hullám irányát mutatja. A csoportsebességvektorok \(\pi/2 - \theta, \pi/2 - \theta'\) szögét zárnak be a vízszintessel.

Ennek érdekes következménye a teljes visszaverődés jelensége. Amennyiben ugyanis \(N'\) kisebb a hullám frekvenciájánál, \(N' < |\omega_0|\), a szög koszinuszának 1-nél nagyobbá kellene válnia. A frekvencia túl nagy ahhoz, hogy az új közegben belső hullám kialakulhasson. Ilyenkor az adott \(\omega_0\) frekvenciájú hullám az eredeti közegben marad. Közel homogén fölényekrétegről minden belső hullám visszaverődik, hiszen mint láttuk, homogén közegben belső hullámok nem létezhetnek.

A belső hullámok terjedésének anizotrópiája merve lapról történő visszaverődés esetén is magmarad. A csoportsebességnek irányát kell változania, de a függőlegessel bezárt szög nagyságának a visszavert hullámban is \(\theta\)-nak kell maradnia. Az \(\alpha\) szögű lejtőn történő visszaverődés jellege függ attól, hogy \(\alpha\) mekkora a kritikus \(\alpha_c \equiv \pi/2 - \theta\) szöghez képest. Ha a dolésszög kicsi, akkor a haladási irány vízszintes komponense nem változik (5.11a ábra), ha viszont nagyobb a kritikusnál, akkor előjelet változtat (5.11b ábra). Végül észre, hogy egyik esetben sem igaz, hogy a beszédszög és a visszaverődési szög azonos lenne. Ez is a belső hullámok egy különleges tulajdonsága. A tengeri belső hullámok meredek partvonalról visszaverődnek. Lapos partvonal esetén erre nincs módjuk (a felső rétegről való visszeverődés sem változtatja meg a csoportsebesség vízszintes komponensét). Az ilyen partvonalak mentén a belső hullámok ezért megtörnek, energiájuk turbulens mozgássá alakul.

A fentiak alapján kvalitatív képet alkothatunk arról is, hogy mi történik, ha a Brunt-Väisälä-frekvencia térben folytonosan változik. Abban az esetben, ha a Brunt-Väisälä-frekvencia

fölfelé gyengül, a fölfelé induló belső síkhullám iránya egyre közelebb kerül a vízszinteshez. Arról a rétegről, melynek Brunt–Väisälä-frekvenciája éppen a hullám ω_0 frekvenciája, a hullám lefelé hajlik, visszaverődik (5.12 ábra).

5.12 ábra: ω_0 frekvenciájú belső hullám terjedési irányának változása fölfelé gyengülő sztratifikáció esetén. a) A hullámszámvektorok változása haladás közben. b) A csoportsebességvektorok változása haladás közben. Az $N = \omega_0$ szinten teljes visszaverődés történik.

Általában, az ω_0 frekvenciájú belső hullám csak abban a tartományban mozoghat, ahol $|\omega_0| \leq N(z)$. Mivel a termoklin zónában a Brunt–Väisälä-frekvenciának lokális maximuma van, az ott keletkezett viszonylag gyors belső hullámok se a felszíni, se a mélytengeri vizekbe nem juthatnak el (5.13).

A légkörben a különleges rétegzettségi tartományokat szokatlan hőmérsékleteloszlásuk jelzi. Ilyenek az ún. inverziós helyzetek, melyeket az jellemez, hogy a hőmérséklet nő a magassággal, a szokásos csökkenés helyett. A magassággal ekkor nagyon gyorsan csökken a sűrűség, s ezért an inverzió mindig erős rétegzettségnek felel meg (l. 12.3 fejezet).

Az inverzió egyik fajtája akkor jön létre, ha szélséges csökkenési időben a talaj lehűlése miatt a hideg éjszakai légtömegek a talaj közében maradnak, s föléjük melegebb levegő kerül (5.14 a ábra). Különösen gyakori ez télen és zárt völgyekben. A talajközeli levegőben ekkor nagy a Brunt–Väisälä-frekvencia és alig változik. Az áramlások közéli sűrűnek, a szennyezések tehát mintegy csapadéba záródnak, nem tudnak a magasabb légrétegekbe jutni. Az ilyen rétegek nem túl vastagok (50 – 100 m) és viszonylag gyorsan feloldódnak.

Nagyobb környezeti veszélyekkel jár az inverzió azon, néhány napig is fennállni képes fajtája, melynek során leszálló, viszonylag meleg légtömegek (anticiklon) kerülnek szinte az egész planetáris határréteg fölé. A planetáris határrétegben akár turbulens feláramlások is lehetnek, az tehát nem rétegzett, s feléje kerül egy erősen sztratifikált, és ezért nagyon stabil réteg. Ha az alsó rétegből hideg légcsomagok kerülnek a melegbe, akkor azok környezetüknel jóval nehezebbek.
5.13 ábra: A Brunt–Väisälä-frekvencia tipikus mélységfüggése tengerekben. A maximális frekvenciák a termoklin zónában esik. Adott \(\omega_0\) frekvenciájú, viszonylag gyors belső hullámok a termoklin zóna azon alrétegére korlátozódnak, ahol \(|\omega_0| \leq N(z)\) (szaggatott vonallal jelölt sáv).

A légkör legalsó rétege, a troposzféra fölött a 10–12 km magasságban kezdődő sztratoszféra is rendelkezik azzal a tulajdonságal, hogy benne a hőmérséklet nő a magassággal (kb. az 50km-es szintig). Ez tehát egy hatalmas, állandó elhelyezkedésű inverziós rétegnek is tekinthető, mely igen stabilan sztratifikált (innét ered elkezdése, s ezért biztosító sín magasságú a repülőgépeknek). A sztratoszféra ezért mintegy zárórétegeként helyezkedik el a troposzféra felett. A két réteg között anyagkicsérőlődés néhány igen erős feláramlással járó folyamat (vulkánkitörés, atom- vagy hidrogémbomba robbantás, nagy viharfelhők) kivételével nem megy vége. Ezért tekinthetjük a légkör alsó rétegét a felette elhelyezkedőktől függetlennek, s ezért szorosan ezután is főleg a troposzférabeli légköri jelenségek vizsgálatára.
5.8 Hegy mögötti hullámok (lee waves)

5.8.1 Szemléletes magyarázat

A domborzi egyenetlenségek fölött az adott irányból állandó U sebességgel fújó szél (vagy homogén áramlás) rétegzettesség esetén jelentős felfelé irányuló energiaáramot biztosító stacionárius belső hullámokat hozhat létre.

A domborzatnak az áramlás irányára merőleges átlagos λ hullámhosszsa meghatározza az általa kellett belső hullámok k_x hullámszámát. A λ távolsában levő két hegyvonalat közötti áthaladás ideje $\lambda/|U|$, a középhez rögzített koordinátarendszerben a hegyvonalak tehát $|\omega| = 2\pi |U|/\lambda$ frekvenciával érkeznek, s ez felid meg a hullám gerjesztési frekvenciájának. Belső hullámok csak $|\omega| < N$ esetén gerjesződnek, vagyis csak olyan U sebességi áramlásokra, melyekre

$$|U| \leq U_c \equiv \frac{\lambda N}{2\pi},$$

azaz, melyek az U_c kritikus sebességnél lasabbak (5.15 ábra). A kritikus sebesség a $N = 10^{-2}$ s$^{-1}$ értékkel számolva, $\lambda = 1 - 10 \text{ km hullámhossz esetén } U_c = 1, 6 - 16 \text{ m/s}$. A nagy hegyek és hegyvonalak mögött tehát még elégű erős szelek is képesek lee hullámokat kelteni. Az éppen a kritikus sebességgel érkező áramlás a Brunt–Väisälä-frekvenciát biztosítja, s hozzá viszonyló terjedési irány, $k_x = 0$ tartozik. Emelő lassabb áramlások kisebb frekvenciájú gerjesztést jelentenek, mely véges k_x hullámszám-komponens megjelenésével jár (l. (5.34)). Mivel a keltés a domborzaton történik, a hullámok innét távolodnak, ezért a kialakuló hullámok frontja az áramlás felé dől (5.15b ábra).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{diagram.png}
\caption{Periodikus domborzat háttéramlásban stacionárius sebességelozást alakíthat ki. A kritikus sebességnél gyorsabb áramlás esetén a mozgás erőssége a magassággal csökken (a). Emelő lassabb áramlásban csillapítatlan belső hullámok keletkeznek, melyek az áramlás irányában és felfelé terjednek (b). A relativ mozgás csoportsebessége merőleges a terjedési irányra, de a háttéramlás sebességével képzett eredő párhuzamos véle. p_{max} és p_{min} a nyomás szélsőértékeit jelzi.}
\end{figure}

A hegyvonalak vagy izolált hegyek mögötti hullámok érdekes meteorológiai jelenségekre vezetnek. A hullámzás okozta feláramlás térben periodikus (de időben alig változó) felhősödést és esetleg csapadékképződést okozhat, hiszen a hullámhegyekben a levegő elérheti a kicsapódási szintet. Az ilyen felhősavak a hegyvonalattal párhuzamosan, azaz a szél irányára merőlegesen alakulnak ki (5.16 ábra). A felhősavok távolsága a hegyvonalat szél irányban mérhető hullámhossza. A hegyvonal egyenetlenségei miatt a hullámhegyekben időnként lokalizált lencsefelhők (lentikuláris felhők) jönnek létre (5.17 ábra). A hegymögötti hullámokban kialakuló felhőket a szél nem elfújja, hanem éppen ellenkezőleg, átfúj rajtuk: a hullámvölgyekbe kerülve.
a vízgőz elpárolog, viszont új légosomagok érkeznek a hullámhegyekbe, ahol végbenegy a kicsapódás. A felhő dinamikus egyensúlyban létezik, alakja helyhez kötött, a stacionárius áramlásnak megfelelően.

5.16 ábra: Hegy mögötti hullámok sematikus képe. Ha a középső levegőréteg nedves, s a hullámhegyek elérik a kicsapódási szintet (szaggatott vonal), akkor a hegyvonalattal párhuzamos felhősávok, vagy lencsefelhők alakulnak ki.

5.17 ábra: A lencsefelhőkben világosan megmutatkozik a levegő rétegzetlensége. A Mount McKinley (Alaszka) mellet kialakult felő [H. Garber felvétele].

5.18 ábra: Hegy mögötti hullámok laboratóriumban. A nyugvó, egyenletesen rétegzett folyadék alján két hegy-alakú akadályt állandó sebességgel húzunk. Ennek következtében nemlineáris belső hullámok alakulnak ki, melyek amplitudója összemérhető a hegyek magasságával.
5.8.2 Lineáris elmélet

Tekintsünk belső hullámokat egy \(u_0 = U, w_0 = 0 \) sebességű vízszintes háttéráramlásban. Az (5.18)-(5.20) mozgásegyenletet ekkor a sebességben ezen konstans érték körül kell lineárisálni, mely a \(\mathbf{v}' = \mathbf{v} - (U, 0) \) sebességterésekre ideális folyadékban a

\[
\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right) \mathbf{v}' = -\frac{1}{\rho_0} \text{grad}p' - g \frac{\partial}{\partial x} \mathbf{n},
\]

(5.39)

\[
\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right) \mathbf{v}' = w \frac{\rho_0}{g} N^2(z),
\]

(5.40)

div \(\mathbf{v}' = 0 \)

(5.41)
eyenletékre vezet. Sikhullámmegoldásra az egyenletek azt mutatják, hogy az 5.7 fejezetben tárgyalt belső hullámokban az \(\omega_0 \rightarrow \omega_0 - Uk_x \) helyettesítést kell elvégeznünk. A diszperziós reláció tehát

\[
\omega_0 = U k_x \pm N \frac{k_x}{k},
\]

(5.42)
ahol \(k \) a hullámszámvektor hossza. Amennyiben a hullámot egy

\[
d(x) = A \cos \left(\frac{2\pi x}{\lambda} \right)
\]

(5.43)
függvényel leírt hegyvonalat hozza létre, a hullám átveszi az ennek megfelelő \(k_x = 2\pi / \lambda > 0 \) hullámszámot. A hullám akkor válik stacionáriussá, frekvenciája akkor tűnik el, ha

\[
|U| = \frac{N}{k},
\]

(5.44)
vagyis, ha a függőleges hullámszámkomponense igaz, hogy

\[
k^2_z = \frac{N^2}{U^2} - k^2_x.
\]

(5.45)

A valós megoldás feltétele \(|N/U| \geq k_x \), azaz \(|U| \leq U_c \), ahol \(U_c \) az (5.38)-ban meghatározott kritikus sebesség.

Az ennél gyorsabb áramlások esetén a hullámszám imagináris: \(k_x = \pm i / \delta \), ahol \(\delta \) valós, s ez a függőleges irányban az \(\exp(-z/\delta) \) szerinti lecsengő amplitudójú hullámszámok felel meg, mely pontosan követi a domborzat alakját (5.15a ábra). Ilyen exponenciálisan csillapodó hullámok kialakulhatnak homogén közegben \((N = 0)\) is, és nem járnak függőleges energiaáramlás.

A kritikusnál lassabb, \(|U| < U_c \) sebességű áramlásokra \(k_x \) valós, s térbeli csillapítás nem történik. A balról jobbra haladó \((U > 0)\) áramlásokhoz az (5.42) egyenlet aló előjelének kell tartoznia, hiszen definició szerint \(N, k_x > 0 \), s \(\omega_0 \) csak úgy tűnhet el, ha a második tag negatív. A háttéráramlásokhoz képest kialakul belső hullám (5.34) frekvenciája tehát \(-Nk_x/k\), azaz negatív. Mivel az energiának felfelé kell haladnia: \(c^2_z > 0 \), ez (5.36) szerint negatív frekvenciával csak \(k_x > 0 \)-ra lehetséges (l. 5.6 ábra). Ezért a függőleges hullámszámkomponens pozitív. A hullámszámvektor jobbra felfelé mutat. A hullámszámvektor hossza most \(N/U \), a belső hullám csoportsebességének abszolútértéke ezért \(U \sin \theta \). A nyugvó koordinátarendszerbeli teljes csoportsebességben \(c^2_z \)-hoz \(x \) irányban hozzáadódik az áramlás \(U \) sebessége. Az \(x \) komponens az igé \(-U \sin^2 \theta + U = U \cos^2 \theta \), a függőleges komponens pedig \(U \sin \theta \cos \theta \), az energiaáram iránya tehát azonos a hullámszámvektoréval (5.15b ábra). A szél alatti (lee) hullámok energiája a sztratoszféráig is felhalmozott.
5.9 Belső hullámok sekély folyadékban, normálmodusok

Tekintsünk egy H mélységű folytonosan rétegzett közeget, melynek vízszintes kiterjedése sokkal nagyobb mélységénél. A tipikus belső hullámok vízszintes hullámhossza $(2\pi/k_x)$ ekkor sokkal nagyobb a függőleges irányhoz tartozó $2\pi/k_z$-nél. A k_x hullámszámkomponens tehát elhanyagolható a függőleges komponenshez képes, $k_x \ll k_z$, és az (5.34) diszperziós reláció

$$\omega_0 = \pm N \frac{k_y}{k_z}$$

alakú. A véges H mélység ugyanakkor meghatározza, hogy a k_z hullámszákmagasság rendje $1/H$. Az ilyen sekély folyadékbeli belső hullámok tehát nem diszperzálók, hanem jól definiált ω_0/k_z konstans terjedési sebességgel rendelkeznek. Ráadásul a H mélységhez csak bizonyos k_z hullámhosszak illeszkedhetnek, ezeknek egy **diszkrét** $k_z^{(n)}$ rendszere alakulhat csak ki. A belső hullámok tehát függőleges irányú viselkedésük szerint állóhullámok, melyekhez csak a

$$c_n = \frac{N}{k_z^{(n)}}$$

vízszintes terjedési sebesség tartozhat.

A lehetséges terjedési sebességek spektrumára függ a peremfeltételtől. A függőleges hullámszámok lehetséges $k_z^{(n)}$ értékeinek meghatározása ugyanolyan típusú feladat, mint a felhangok spektrumának, vagy a kvantummechanikai potenciálgyöktörök kötött állapotainak kiszámítása. A leggyorsabb esetben, amikor a folyadékon egy lappal lefedjük (mirev lap közelítés), s ezért felületi mozgás nem alakulhat ki, a peremfeltétel az, hogy a w függőleges sebesség mind az aljzaton, mind a felszínen eltűnik. Állandó Brunt–Väisälä-frekvencia mellett a függőleges sebesség megtagadható trigonometrikus függvény alapján írható le. Ennek félhullámhossza n egész számszor férhet rá a H intervallumra, azaz $n\pi/k_z^{(n)} = H$, amiből $k_z^{(n)} = n\pi/H$. A lehetséges terjedési sebességek tehát

$$c_n = \frac{NH}{n\pi}$$

legegyorsabban az $n = 1$ indéksű belső hullám terjed, a többiek sebessége n-nel fordítottan arányos. A legkörbe, $(N = 10^{-2} \text{ 1/s}, H = 10 \text{ km})$ az első módszerek sebessége $c_1 = 32 \text{ m/s}$. Az óceánok átlagára jellemző $N = 10^{3} \text{ 1/s}$ -os értékké és $H = 4 \text{ km}$ számvolya, $c_1 = 1\text{m/s}$. Ugyanez a sebesség sekély vizekben sokkal lassabb. A Brunt–Väisälä-frekvencia átlagos redukált gravitációs gyorsulással megadott (5.5) kifejezését használva

$$c_n \approx \frac{\sqrt{gH}}{n\pi}$$

Az ilyen belső hullámok tehát a sekély folyadék felszínű hullámaiknak megfelelő, de őket a redukált gravitációs gyorsulás határozza meg. Ráadásul egész spektrumuk létezik a folytonos rétegzettség következtében. Mindegyik terjedési sebességhoz a hidrodinamikai változók más és más függőleges előszála tartozik.

A w függőleges sebesség magasságfüggése $\sin(Nz/c_n)$-nel arányos, hiszen csak így tüntet el mindkét határon. A divergenciamentesség miatt a vízszintes sebesség $\cos(Nz/c_n)$ alakban függ a magasságtól. (5.18) szerint ugyanilyen a dinamikai nyomás z-függése. A sekély folyadékban érvényes hidrosztatikai viszonyok miatt a sűrűségengadozás ennek integrálja, tehát $\sin(Nz/c_n)$-nel arányos.
Általánosan igaz, hogy a linearizált (5.18)-(5.20) egyenletek megoldása sebész folyadékban
(amikor \(dw/dt\) elhanyagolható) írható, mint

\[
(u, p', w, q') = \left(u_n a_n(z), p'_n a_n(z), w_n b_n(z), \frac{da_n(z)}{dz} \right) e^{-ikz(x-ct)},
\]

(5.50)
illetve mint ezen kifejezések lineáris kombinációja. Itt \(a_n(z)\) egy dimenziótlan fiúgyv, \(b_n(z)\) az \(a_n\) integrálja, \(u_n, p'_n, w_n, \theta_n\) pedig (komplex) állandók. Az \(a_n(z)\) függvényt a rétegzett folyadék \(n\)-edik normálmodúsának nevezzük. Ez a mennyiségek függőleges iránybeli eloszlását adja meg a \(c_n\) sebességgel terjedő hullám. A magasságfüggés tehát állóhullám, a vízszintes koordinátától való függés pedig haladó hullám jellegű. Az \(a_n(z)\) mennyiség a \(z\) magasságban haladó hullám amplitúdójával arányos. Lineáris problémákról lévén szó, az általános megoldás kifejthető a (5.50) normálmodusok összegeként. Az egyes normálmodusok sülyát a kezdőfeltétel szabja meg. Annak ellenére, hogy minden egyes módszerek vizsgálatos terjedés tartozik, összegű függőleges komponensű mozgást is leírhat. A rövidebb hullámossz módusok gyorsabb viszkozus csillapodása miatt (a relaxációs ráta \(\nu k^2\)-tel arányos) hosszú időskalán csak az \(első néhány módusnak\) van jelentősége. Merev lap közelítésben állandó Brunt–Väisälä-frekvencia mellett tehát a normálmodusok (5.19 ábra)

\[
a_n(z) = \cos(Nz/c_n), \quad n = 1, 2, 3, \ldots
\]

(5.51)
alakuk, ahol a \(c_n\) sebességeket (5.48) adj meg, s a fiúgyvenek maximális értéket 1-re normáltuk.

5.19 ábra: Állandó Brunt–Väisälä-frekvenciájú folyadék első két normálmodusa: \(a_1(z), a_2(z)\). A normálmodusokból minden hidrodinamikai változó magasságfüggése megkapható. Az \(n = 0\)-hoz tartozó \(a_0 \approx 1\) barotróf módus olyan mozgást jellemzi, mely homogén folyadékban is előfordul.

Amennyiben a folyadék felszín mozgását is megengedjük, \(w\) nem túnik el e felszínen. A pontos peremfeltételhez\(^6\) tartozó normálmodúsok kidolgozása helyett, szemléletesen is könnyen elérhető, hogy \(\tilde{u}\) jelensékgént megjelenik egy olyan hullám, melyben az egész folyadék vízszintesen mozgása független a mélységtől, tehát olyan a sebességtér, mint a nem rétegzett sebés homogén folyadék felszíní hullámait esetén. (Ez azért lehet így, mert az átlagos sűrűségadózás csekhely, l. (5.1.) Ennek megfelelően kialakul egy

\[
c_0 = \sqrt{gH}
\]

(5.52)
sebesség hullám, melyhez az \(a_0(z) \approx 1\) normálmodus tartozik. Az óceáni példában \(c_0 = 200\) m/s, tehát két nagyságrenddel gyorsabb, mint a leggyorsabb belső hullám. A többi normálmodus

\(^6\)A felső perem \(w = \partial \tilde{u}/\partial t \neq \rho\) és \(\partial \tilde{p} = \rho \partial \tilde{u}/\partial t\). A linearizált (5.19) egyenletből \(\partial \tilde{p}/\partial t = \rho \partial \tilde{u}/\partial t\), mely a \(\partial \tilde{p}/\partial z = -\tilde{g} \rho \partial \tilde{u}/\partial t\) hidrosztatikai egyenlettel a \(\partial \tilde{p}/\partial z = -\tilde{g} \rho \partial \tilde{u}/\partial t\) összfüggésre vezet. A normálmodusok (5.50) alakja miatt az \(a_n\) amplitúdóra a \(\partial a_n/\partial z = -a_n \bar{N}^2/\tilde{g}\) peremfeltételnek kell fennállnia.
sebessége alig változik (a korrekció $\Delta \rho / \rho_0$ rendű, s (5.48) jó közelítéssel érvényben marad7.

Az $n \geq 1$ módszerek az ún. baroklinik módusok, hiszen a hozzájuk tartozó áramlásban a nyomás- és sűrűségengedőzások magasságfüggése alapvetően különböző. Az ezektől eltérő jellegű $n = 0$ módszat barotrópnak nevezzük. A merev lap közelítés jellegére vonatkozóan ebből azt a következtetést vonhatjuk le, hogy az kiszűrő gyors felszín mozgást, a lassú baroklinik módusokat viszont alig módosítja.

5.10 Kétretegű közegek

5.10.1 Kétretegű sekélyfolyadék-dinamika

Amennyiben a $\bar{p}(z)$ egyensúlyi sűrűség változása nagyon erős egy keskeny tartományban (pl. a termoklin zónában vagy a planetáris határréteg tetején), akkor ott jó közelítéssel sűrűségugrásról beszélhetünk. A legegyszerűbb közelítésekben ilyenkor két homogén összenyomhatatlan réteget különböztetünk meg, köztük valamennyira $\Delta \rho$ sűrűsékgülönséggel. Az egyensúlyi rétegzettség azt követeli meg, hogy a sűrűbb közeg félüljön alul. A relativ sűrűségkülönbség kicsi, $\Delta \rho / \rho_0 << 1$.

![Diagram](image)

5.20 ábra: A kétretegű közelítésben két élesen elkülönülő, homogén és összenyomhatatlan sekély folyadékréteggel modellezzük a szratifikációt. A belső és a külső felszín is szabadon mozoghat. A vízszintes sebesség mindkét rétegben független a magasságtól.

Mindkét réteget keskenynek feltételezve, alkalmazhatjuk a hidrosztatikus közelítést, miszerint a nyomás a sűrűség magasság szerinti integráljákat ért elő. Ez mindkét közegben lineáris z-függést jelent, a két közeg (idő-, és helyfüggő) határán a nyomás folytonos, de gradiense ugrászerűen változik. Az egyes közegek pillanatnyi és átlagos vastagsága legyen $h_1(x,y,t)$, $h_2(x,y,t)$, ill., H_1, H_2 (a 2-es közeg a sűrűbb). A $z = 0$ szinten vízszintes áljzatot feltételezve, a teljes nyugalmi folyadékmélység $H = H_1 + H_2$. A felszín és a belső elválasztó felület ingadozását η-val, ill. χ-vel jelölve (5.20 ábra), a pillanatnyi rétegvastagságok

$$h_1 = \eta - \chi + H_1, \quad h_2 = \chi + H_2.$$ \hspace{1cm} (5.53)

A teljes nyomáseloszlás a folyadékban:

$$p = p_0 + \rho_0 g (\eta + H - z), \quad \text{ha} \quad z > h_2(x,y,t),$$ \hspace{1cm} (5.54)

7A $\partial \rho_0 / \partial z = -nN^2/g$ peremfeltétel dimenzióban jobb oldali együthatója $N^2 H/g \approx \Delta \rho / \rho_0 \ll 1$, s ezért a peremfeltétel $n \neq 0$ esetén alig tér el a $\partial \rho_0 / \partial z = 0$ feltételtől.
\[p = p_0 + \varrho_0 g h_1 + (\varrho_0 + \Delta\varrho)g(h_2 - z) \]
(5.55)

egyébként, ahol \(p_0 \) a konstans külső felszíni nyomás. Ezután mindkét közegben felirjuk a vízszintes sebességkomponensekre vonatkozó Euler-egyenletet, melyben a nyomásgradiens \(\eta \) és \(\chi \) gradienseivel fejezzük ki. A felső és alsó közeg vízszintes síkbeli, magasságtól független sebességvektorait \(\mathbf{u}_1 \)-gyel, ill. \(\mathbf{u}_2 \)-vel jelölve:

\[
\begin{align*}
\frac{d\mathbf{u}_1}{dt} &= -g \text{grad}\eta, \\
\frac{d\mathbf{u}_2}{dt} &= -g \text{grad}\eta - g' \text{grad}\chi.
\end{align*}
\]
(5.56)

A \(d/dt \) derivált csak a vízszintes sebességkomponenseket tartalmazza. Itt \(g' \equiv g \Delta\varrho/\varrho_0 \) a sűrűségugrás miatt létrejött redukált gravitációs gyorsulás. Az egyes összényomhatatlan folyadék-rétegekben a kontinuitást a folyadékoszlópok térfogatának megmaradása jelenti. Ezért mindkét közeg \(h_i, i = 1, 2 \) vastagságára fennáll a (2.13) egyenlet, tehát

\[
\frac{dh_i}{dt} = -h_i \text{div}\mathbf{u}_i, \quad i = 1, 2.
\]
(5.57)

A fenti egyenletek a (5.53) kapcsolattal együtt zárt egyenletrendszer alakotnak, a két enyhén különböző sűrűségű sekélyfolyadékréteg egyenleteit. A szokásos dimenzióalapjással a két kontinuitási egyenlet nem változik, a dinamikai egyenletekben grad\(\eta \) előtt a külső (1.27) Froude-szám, grad\(\chi \) előtt pedig az

\[
Fr' = \frac{U}{\sqrt{g' H}}.
\]
(5.58)

belső Froude-szám jelenik meg. Ez mutatja, hogy az utóbbi csak a belső elválasztó felülettel kapcsolatos mozgásokat jellemzi.

5.10.2 Belső hullámok két közeg határán

Kis amplitudójú lineáris hullákmakra az egyenletrendszer linearizálható a \(h_i = H_i \) átlagos rétegvastagsághoz tartozó nyugalmi állapot körül. Az \((u_1, u_2, \eta, \chi) = (u_{10}, u_{20}, \eta_0, \chi_0)\) \(\exp(\omega_0 t - ik_x x) \) alakú, \(x \) irányban haladó sík hullámformáját keresve a

\[
\omega_0 u_{10} = g k_x \eta_0, \quad \omega_0 u_{20} = g k_x \eta_0 + g' k_x \chi_0,
\]
(5.59)

\[
\omega_0(\eta_0 - \chi_0) = H_1 k_x u_{10}, \quad \omega_0 \chi_0 = H_2 k_x u_{20}
\]
(5.60)

polarizációs egyenletekre jutunk. Az első és harmadik egyenletből a sebességeket kiküszöbölcve a

\[
\chi_0 = \eta_0 \left(1 - g H_1 \frac{k_x}{\omega_0^2} \right)
\]
(5.61)

összefüggésre, majd a sebességek közötti

\[
u_{10} = u_{20} \left(1 - g' H_2 \frac{k_x}{\omega_0^2} \right)
\]
(5.62)

alakra jutunk. A sebesség- és felszínfogadási sebességek amplitudóinak a két közegben tehát arányosnak kell lenni. Az első és utolsó polarizációs egyenletből \(u_{10}\chi_0 = u_{20}\eta_0 g H_2 k_x^2/\omega_0^2 \) következik. Ez csak akkor konzisztens (5.61), (5.62)-vel, ha

\[
\left(1 - \frac{g' H_2}{c^2} \right) \left(1 - \frac{g H_1}{c^2} \right) = \frac{g H_2}{c^2}.
\]
(5.63)

124
Mivel az egyenletben csak az \(\omega_0/k_x \) kombináció jelent meg, bevezettük a \(c \equiv \omega_0/k_x \) terjedési sebességet, melynek négyzetére a
\[
c^4 - c^2(gH + g'H_2) + gg' H_1 H_2 = 0
\] (5.64)
másodfokú egyenletet kapjuk. Ez természetesen egzaktul is megoldható, de érdemes kihasználni, hogy a relatív sűrűségkülönbség csökél, vagyis \(g' \ll g \).

A fenti egyenletnek van olyan megoldása, melyben a sebesség nagy, a \(g' \)-vel arányos tagok elhanyagolhatók, s ezért vezető rendben a terjedési sebesség abszolútértéke
\[
c_0 = \sqrt{gH}.
\] (5.65)
Ekkor \(u_{10} \approx u_{20} \) és \(\chi_0 = \eta_0 H_2/H \). A sebesség a két rétegben tehát alig különbözik, s a felszínű ingadozások aránya a rétegvastagságok arányát követi (5.21a ábra). Ez nagyon közel esik a \(H \) vastagságú összennyomhatatlan homogén sekelő folyadék hullámmozgásához, s ezért joggal nevezhető barotróp módnak.

\[\text{a)} \quad \text{b)}\]

5.21 ábra: Kis amplitudójú lineáris hullámok kétrétegű folyadékban. a) Barotróp módsz: mindkét réteg hasonlóan mozog. b) Baroklin módsz: mindkét réteg ellentétes fázisban mozog és az elválasztó felület hullámzása sokkal erősebb a felszínénél.

A másik gyök nagysága kicsi, \(g' \)-vel arányos, s ekkor \(c^4 \) hanyagolható el. Ezzel a
\[
c_1 = \sqrt{g' H_1 H_2 \over H}
\] (5.66)
megoldást kapjuk, \(g'/g \) rendő korrekciók erejéig. Ilyenkor \(u_{20} = -u_{10} H_1/H_2 \), és \(\chi_0 = -\eta_0 H/(g H_2) \). A két rétegben tehát \(\text{ellenkező előjelű} \) a vízszintes sebesség. Ráadásul a belső határfelület hullámzása jóval erősebb (\(g/g' \) arányban) a felszínénél. Az előjeliek itt is különbözőek, tehát felszíni kidudorodáshoz belső behorpadás tartozik és fordítva (5.21b ábra). Ez a mozgás a kétrezőlé rétegzett közeg belső hulláma. A \(c_1 \) sebességű megoldást nevezik ezért baroklin módnak is. Egyforma vastagságú rétegek (\(H_1 = H/2 \)) esetén az áramlás analóg a folytonosan rétegzett folyadék első baroklin módszével (1. 5.9 fejezet), hiszen ott is előjelével vált a sebesség a folyadék középontjában. A két folyadékréteg határfelületén kialakuló hullám \(c_1 = \sqrt{g'H}/2 \) sebessége azonban valamivel nagyobb a folytonos közégbeli \(c_1 = \sqrt{g'H}/\pi \)-nél, mert a kétféle áramlás részleti nem azonosak.

Két közeg határán futó belső hullámok tavakban és tengerekben rendszeresen előfordulnak a felső higabb és alacsonyabb réteg határán, pl. folyókorkolatok középpontjában vagy a termoklin zónában. A felszínről nézve mozgásuk alig vehető észre (5.22 ábra), legfeljebb a belső hullámhegyek által keltett apró felszíni kapilláris hullámok okozta fényvisszaverés révén. Felfedezésükre az vezetett, hogy a torkolatok környékén a sós tengervízen néhány méter vastagságban széterülő edesvízbe érkező hajók hirtelen lefekeződtek, mert energiájuk belső hullámok keltésére fordítódott. E
"dead water"-nek nevezett jelenség magyarázatát és a belső hullámok első elmeletét ugyanaz a V. Ekman adta meg (1904-ben), akinek nevéhez fűződik a forgatott rendszerék határértégeinek megértése. Légközi rétegek határán futó belső hullámok is gyakran megfigyelhetők pl. füst vagy közé szétterülésekor. A hideg légréteg tettekén vízszintes síkban haladó belső hullámok párhuzamos felhősavak kialakulására vezethetnek.

5.22 ábra: Belső hullámok gerjesztése légrétegű közegben. Az úszó tártyak a felső híg és alsó sűrűbb folyadék határán belső hullámokat keltenek.

5.10.3 Megjegyzések

A légrétegű sejkelyfolyadék-dinamika a lineáris hullámokon túl is számos érdekes jelenséget leír. A baroklin mozgásokra jellemző általános tulajdonság, hogy a felszíni alakváltozást azzal ellentétes előjelű és sokkal nagyobb mértékű belső változás követi. Képzeljük el például, hogy valamilyen külső hatás miatt egy csekély felszinemelkedést stabilizálódik. Ezt tavadban gyakran az adott irányból huzamos ideig fújó szél nyírásai ereje okozza, mely az egyik oldalra hajtja a vizet. Tekintsük a közel állandó felszíni méredkséget adottnak, mely alkalmazzuk az alsó közeg Euler-egyenletét. A stacionáris állapot fentartásából azt a feltételt kapjuk, hogy a két gradiensnek közlítőleg kompenzálnia kell egymást, vagyis

$$\frac{\partial X}{\partial x} \approx -\frac{g}{g^l} \frac{\partial \eta}{\partial x}$$ (5.67)

Az állandó szél tehát a termoklin zóna jelentős lejtést válthatja ki (5.23 ábra). A szél elüllése után ezen nemegyenlőségi állapot stabilitása megszűnik, a víz elkezd visszaáramlani. Téhetetlensége miatt azonban túllendül a nyugalmi állapoton, s ez okozza az állóhullámok, tőlengések kialakulását (l. 12.1 fejezet).

5.23 ábra: Az állandó szélnyírás következtében a tavak felszíne megdől. A belső elválasztó réteg (a termoklin zóna) ezzel ellentétes irányban és jóval nagyobb mértékben lejt.

Több réteg feltételezésekor annyi c_n hullámsebességet találunk, amennyi a rétegek száma. Egyre több, egyre keskenyebb réteg használatával, s a teljes folyadékmélységet állandó H értéken
tartva, visszakapjuk a folytonos rétegzettséghez tartozó c_n, $n = 0, 1, 2, \ldots$ normálmodus-eloszlást. A folytonos rétegzettség tehát számos keskeny egymás fölöti réteg határesetének tekinthető, melyek között a sűrűségkülönbség vastagságuk arányában csökken.

5.11 A redukált sekélyfolyadék-modell

A kétetegű leírás különösen egyszerű esetét kapjuk, ha az egyik közeg jóval nagyobb folyadéktőmeget képvisel, mint a másik. Annak kifejezésére, hogy az eredmény független attól, hogy a keskeny közeg félül vagy alul helyezkedik el, a keskeny közeg pillanatnyi (átalag) vastagságát $h(x,t)$-vel (h_0-lal) jelöljük. Feltesszük, hogy a teljes mélység sokkal nagyobb a vizsgált rétegénél, tehát $h \ll H$.

A dinamikai egyenlet levezetéséhez célszerű azt az esetet tekinteni, amikor a keskeny közeg van alul. Ekkor a felső közeg gyakorlatilag áll, számára a választőfelület mozgása elhanyagolhatóan kis perturbációt jelent csak. Így elég az alsó közeg mozgásával törölnünk. Mivel felül érvényes a ϱ_0 sűrűségnek megfelelő hidrostatikája, az alsó közegbeli p' dinamikai nyomás

$$p''(x,y,t) = g \Delta \varrho h(x,y,t). \tag{5.68}$$

A sekély mozgó réteg vízszintes sískbeli sebességterét a

$$\frac{\partial u}{\partial t} + (\text{ugrad})u = -g' \text{grad} h \tag{5.69}$$

eyenlet adja meg, s homogén közegről lévén sző, kontinuitását a

$$\frac{dh}{dt} = -h \text{div} u \tag{5.70}$$

eyenlet fejezi ki. Mindez megfelel a kétetegű sekélyfolyadék-dinamika $\mathbf{u}_1, \eta \to 0$ határesetének. Levezetésünkben azonban a felső közeg sekélységét nem tételeztük fel. Az alsó közeg dinamikájára tehát a (2.7) sekélyfolyadék-egyenlettel ekvivalens alakot kaptuk, de benne nem a teljes g gravitációs gyorsulás, hanem a $g' = g \Delta \varrho /\varrho_0$ redukált gyorsulás jelenik meg. Ezt az egyenletrendszert ezért a redukált sekélyfolyadék-modellnek is nevezünk. Ugyanezek az egyenletek igazak egy keskeny ritka közegre is, mely egy sűrűbb passzív folyadék felett helyezkedik el, ha a sűrűségek különbsége kicsi.

A keskeny réteg határán kialakuló belső hullámok sebessége természetesen

$$c_1 = \sqrt{g' \varrho_0}, \tag{5.71}$$

melyet az (5.66) egyenlet $h_0/H \to 1$ határesetéből is megkaphatunk, ahol $h_0 =$min(H_1,H_2). A barotróp módsz erősség nem jelenhet meg, hiszen a vastag közeg áll. A közeghatár hullámmozgása, és (5.69),(5.70) értelmében a mozgó közeg egész hidrodinamikája független a folyadék teljes mélységétől.

A redukált sekélyfolyadék egyenletek túlzott egyszerűsítésének tűnhet a kis amplitudójú belső hullámok jellemzésére. Van azonban számos olyan nemlineáris jelenség, melyek leírása már a kétetegű közelítésben is igen nehéz. A redukált sekélyfolyadék-modell viszont sokszor meglepően valóságkézi eredményeket szolgáltat a véges amplitudójú nemlineáris mozgásokra.

A redukált sekélyfolyadékmodell általános megoldása nem ismert. Egyedimenziós változata $(u \equiv u(x,t), v \equiv 0)$ stacionárius esetben két megmaradó mennyiségként rendelkezik, melyek ekvivalensek a hidrodinamikai egyenletekből. Az

$$u(x)h(x) = Q \tag{5.72}$$

127
hozam állandósága a (5.70) kontinuitási egyenletből, az

\[
\frac{u(x)^2}{2} + g' h(x) = \frac{Q^2}{2h^2(x)} + g' h(x) = B
\]

Bernoulli-állandó léte pedig a (5.69) Euler-egyenletből olvasható le. Amennyiben a sűrű alsó közeg egy csakély \(d(x) \) domborzati kidudorodás fölött áramlik, úgy, hogy az áramlás lassan változik, az energiamegmaradást kifejező Bernoulli-törvény az

\[
\frac{u(x)^2}{2} + g' (h(x) + d(x)) = B
\]

alakot ölti.

5.12 Szuperkritikus áramlások

A sekély folyadékretékében kialakuló véges amplitúdójú, nemlineáris hullámok rendszerint jelentős áramlásával járnak, mígghozzá gyorsabban, mint a lineáris belső hullámok terjedési sebessége.

Az olyan áramlásokat, melyek \(U \) átlagsebessége nagyobb a lineáris belső hullámok fizikai sebességénél, szuperkritikusaknak nevezzük. Az ilyen áramlások \(Fr' \) belső Froude-száma tehát egyénl nagyobb. Az \(Fr' < 1 \) feltételt kielégítő áramlások szubkritikusak.

Egy kétdimenziós szuperkritikus áramlás alapvető tulajdonsága, hogy a benne kialakuló lineáris hullámok nem terjedhetnek az áramlással szemben. Így a pontszerű forráskörön kincsbelő belső hullámok csak a forrásmögötő arccin (1/\(Fr' \)) fényfeszültségű tartománya juthatnak el (5.24 ábra), hasonlóan a szuperszonikus áramlásbeli hangterjedéshez.

\[\text{a) } U < c \quad \text{b) } U > c\]

![5.24 ábra: A vízszintes síkban pontszerű forráskörön kincsbelő belső hullámok szubkritikus ármlásban. a) Szubkritikus, b) szuperkritikus ármlás. A } c \text{ paraméter a belső (vagy a felszíni) lineáris hullámok terjedési sebessége.}]

A továbbiakban az egydimenziós redukált sekélyfolyadék-modellt használjuk. A szuperkritikus és szubkritikus áramlások közötti másik szembennevű különbség az akadályok fölötti átjárás-sal kapcsolatos. Tételezzük fel, hogy a \(h_0 \) vastagságú \(U_0 \) sebességű \((Q_0 = U_0 h_0 \) hozama) alsó sűrű folyadékretégl enyhé \(d(x) \) domborzati kitüremkedéssel találkozik. Az (5.74) Bernoulli-tétel értelmében

\[
\frac{Q_0^2}{2g' h^2} + h = B/g' - d,
\]

ahol \(h(x) \) az \(x \) ponthoz tartozó rétegvastagság a sűrű alsó rétegben. A kis \(\Delta d \) domborzati emelkedéshez tartozó \(\Delta h \) vastagságváltozás ebből differenciálással kapható:

\[
\frac{\Delta h}{\Delta d} = \frac{1}{Fr'^2 - 1},
\]
ahol

$$F'r = \sqrt{\frac{Q_r^2}{g' h_0^3}} = \frac{U_0}{\sqrt{g' h_0}}$$ \hspace{1cm} (5.77)$$

a beáramlási belső Froude-szám. A viselkedés alapvetően függ ($F'r - 1$) előjeletől. Szubkritikus áramlásban a derivált negatív, sőt mindig kisebb (-1)-nél, melyből következik, hogy $h + d < h_0$.

A réteg amelyre elkötelezünk, hogy a folyadékhatter behorad a domborzat felett: a folyadék a potenciális energiából nyer kinetikus energiát az akadályon való áthatoláshoz (5.25a ábra).

Szuperkritikus áramlásban a vastagság megnövekszik, a kezdői kinetikus energia olyan nagy, hogy a folyadék felfüggeszklik (5.25b ábra). Az $F'r = 1$ értékhez tartozó szinguláris derivált arra utal, hogy ott stacionáris megoldás nem létezhet.

5.25 ábra: A két közeg közötti elválasztó felület alakja enyhe domborzati kidudorodás fölött különböző jellegű a szubkritikus (a) és a szuperkritikus (b) esetben.

A ményben az akadály meredek, a sűrű folyadék előtte lelassul, feltorlódik, ezért az áramlás szubkritikus. A legmagasabb ponton áthaladva azonban a folyadék a lejtőn történő lefutás következtében felfyorsul, s az áramlás gyakran szuperkritikussá válik (5.26 ábra). Az ilyen szuperkritikus áramlások instabilak. A bennük felhalmozódott kinetikus energia egy része turbulens áramlás révén leadódik. A folyadék átlagos mozgása hirtelen lelassul, s egy lépcsősz erő vastagodás áll be a sűrű folyadékéretelben, a belső hidraulikus ugrás.

5.26 ábra: A meredek domborzati lejtőn lezúduló folyadék szuperkritikussá gyorsul, és a sík felszínre való kifutás után belső hidraulikus ugrás képződik.

A behatoló légköri hideg légkömegek hegyek mögött erős lecsapó áramlatokat, bükö szeleket (főn, chinook) okoznak. A hegy mögötti síkságon a belső hidraulikus ugrás időnként kirajzolódik a felhőképekben (5.27 ábra).
5.27 ábra: Hidraulikus ugrás kialakulhat szuperkritikus bukó szelek síkra történő kifutása után. Az ugrást a felette képződő felhők és a felkavart por teszi láthatóvá [Turner].

5.13 A hidraulikus ugrás és a torlóhullám (bore) jellemzése

Az időfüggően áramló jórészben hidraulikus ugrás nagysága vízszintes síkon való áramlás esetén egyszerűen megkapható. Figyelembe kell vennünk, hogy a kontinuálási egyenlet érvényes, de az ugrás közben kialakuló erős turbulencia miatt a lokális Bernoulli-tétel nem alkalmazható. Az ugrás közelében sem a liminaritás (a szélesség függőlegesre a magasságtól), sem az időfüggőlegesnek nem teljesül. Az ugrás előtti \(u_1 \) sebességű, \(h_1 \) vastagságú és utáni \(u_2 \) sebességű, \(h_2 \) vastagságú lamináris tartományban (5.28 ábra) azonban elképzelhetünk két függőleges sikot és a közöttük levő tartománynak felírhatjuk az Euler-egyenlet integrális változatát. Az egyszerűség kedvéért a sűrűséget most egységnyihez vesszük. A síkokra ható erők eredőjeinek stacionáris ugrás esetén a teljes impulzusváltozással kell megegyeznie. Az utóbbi az \(u_h \)-u mennyiség különbösege a két oldalon, tehát \(Q(u_2 - u_1) = Q^2(1/h_2 - 1/h_1) \), ahol felhasználtuk a (5.72) kontinuálási feltételt. Az erő mindkét oldalon az átlagos \(g' h/2 \) nyomásnövekmény és a \(h \) magasság szorzata. Mivel a járulék a két oldalon különböző előjelű, az eredő \(g'(h_1^2 - h_2^2)/2 \). A keresett egyenlet ezért

\[
g'(h_1 + h_2) = 2u_1^2 h_1 h_2 = 2 \frac{Q^2}{h_1 h_2}. \tag{5.78}
\]

A beáramlás adatokat általában ismerjük, ezért az értékes mennyiség az ugrás mértéke, vagyis a \(h_2 \) magasság.

A befolyási sebesség és szintmagasság, ill. a belőlük alkotott \(Fr'_1 = u_1/\sqrt{g' h_1} \equiv Q/\sqrt{g'h_1^3} \) belső Froude-szám ismeretében a kifolyási szintmagasság

\[
h_2 = h_1 \frac{\sqrt{1 + 8Fr'^2_1} - 1}{2}. \tag{5.79}
\]

Ez valóban nagyobb \(h_1 \)-nél, amennyiben a befolyás szuperkritikus, tehát \(Fr'_1 > 1 \). Az ugrás utáni folyadékszint a belső Froude-szám \(\sqrt{3} \) értéknél lesz kétszer olyan magas mint a befolyási. A megfelelő kifolyási sebesség

\[
u_2 = u_1 \frac{h_1}{h_2} \tag{5.80}
\]

természetesen már szubkritikus: \(Fr''_2 = u_2/\sqrt{g h_2} < 1 \). Az (5.73) Bernoulli-konstans nem azonos
5.28 ábra: Stacionárius belső hidraulikus ugrás és jellemzői a redukált sekély folyadék modellben. A u_1 sebességgel mozgó koordinátarendszerben az ugrás torlóhullámként, bore-ként jelenik meg.

a hidraulikus ugrás két oldalán. A

$$B_1 - B_2 = g' \left(\frac{h_2 - h_1}{4} \right)^3$$

különböző méri azt az energiát, mely turbulencia keltésére fordítódott. Mivel ennek pozitívnak kell lennie, az eredmény mutatja, hogy hidraulikus ugrás csak $h_2 > h_1$, vagyis szuperkritikus beáramlás esetén lehetséges.

Egy szorosan kapcsolódó jelenség a hígg és sűrű folyadék határfelületén lépcsőszerv mélység-változással kísért belső torlóhullám, vagy belső bore. Mivel a bore közel állandó sebességgel halad, a vízlepcsővel együttmozgó koordinátarendszerben a folyamat ugyanúgy írható le, mint egy hidraulikus ugrás. Az álló folyadékban U sebességgel haladó bore esetén a sekély rétegbeli áramlású sebesség az együttmozgó koordinátarendszerben $u_1 = -U$. Ezért (5.78) most a bore sebességének kifejezésére használható az előtte és mögötte létrejövő rétegvastagságok függvényében. A bore U sebességére tehát fennáll, hogy

$$U^2 = g' h_2 \frac{1}{2} \left(1 + \frac{h_2}{h_1} \right)$$

Ez az U lényegesen nagyobb mint az eredeti h_1, mint az új $h_2 > h_1$ mélységű folyadék réteg felületén kialakuló lineáris belső hullámok $\sqrt{g' h_1}$ ill., $\sqrt{g' h_2}$ sebességénél. Négyszéless mélységű arány, $h_2/h_1 = 4$ esetén pl. $U = \sqrt{16} \sqrt{g' h_1}$. Ez a kisebb redukció és 10 m-es keskenyebb rétegvastagság mellett az ilyen bore sebessége $U = 1$ m/s.

A nagy mélységi arányú erős bore-ok mindig turbulens hullámzás övezte vízlepcső megjelenésével járnak. A gyenge bore-okban azonban, mélyebb egy kritikusnál kisebb mélységű arány jellemze (mely belső bore esetén 3 körüli), a hidraulikus ugrásban felszabaduló energiát véges amplitudójú hullámok szállítják el (5.29 ábra). Az ilyen hullámzó (undulális) bore esetén a magas folyadékszint hullámos felület. A h_2 mennyiség átlagos mélységként értelmezendő, s a hullámok amplitudója $h_2 - h_1$ nagyságrendű. A λ hullámkossza a h_2 bore-mélység mintegy tízeszám. A belső hullámzó bore-ok a belső hullámok egyik leggyakrabban nemlineáris változatát alkotják.

Ezek a nemlineáris belső hullámok laboratóriumban könnyen tanulmányozhatók (5.30 ábra), és mind a légköreben, mind tengerekben vagy tavakban gyakoriak. Nagy folyadéktömegek vízszintes mozgása az előttük levő folyadékot feltorlásolja, abban bore-t hoz létre, mely rendszerint

8 A folyadék-levegő határfelületen is kialakuló külső hidraulikus ugrásra eredményeink a $g' \rightarrow g$ helyettesítéssel érvényesek.

9 A $g' \rightarrow g$ helyettesítéssel a homogén sekély folyadék felszíni torlóhullámának sebességet kapjuk.

10 A szabad felszínükre 1, 3.
5.29 ábra: A belső torlóhullám (bore) mozgó hidraulikus ugrás. Az ábra a hullámzó (unduláris) belső bore jellemzőit mutatja, mely kis magassági arány \((h_2/h_1 < 3)\) esetén alakul ki. Az alsó közeg, melybe az árhullám behatol, nyugalomban van.

a gyengébb, hullámzó típusú. Unduláris bore-t alakíthat ki a sós dagályhullám megőrkezése a partmenti édesvízrétegekben, vagy a Földközi-tenger sósabb vizének és az Atlanti-óceán kevéssé sós vizének a Gibraltári-szorosnál történő ki- és beáramlása (5.31 ábra). A gyorsan érkező hideg légáramlatok az előttük tölt meleg levegőrétegben hozhatnak létre hullámzó belső bore-okat.

5.30 ábra: Hullámzó (unduláris) belső bore laboratóriumban két különböző (világos és sötétszürke) közeg határán.

5.14 Gravitációs áramlatok

Ha a vékony, sűrű folyadékreteg csak véges vízszintes tartománya terjed ki, vagyis a két közeget elválaszthatatlanul valahol kifújt a peremre (az alsó domótorzatra), az nemegységüli kezdőfélételt jelent. A kiegyenlítődés erős áramlásával jár, melynek hajtóereje a gravitáció, noha esetleg csak néhány ezrelelénnyi sűrűségkülönbség miatt. Az ilyen mozgásokat ezért gravitációs áramlásoknak nevezzük. A gravitációs áramlat határvonalaik áthaladása a perem egy rögzített pontján hirtelen sűrűségváltozással jár. Ezért az áramlat elejét jelző diszkontinuáciú felületet frontvonálnak, magát az áramlatot pedig frontnak is tekintethetjük.

\[U' = 0 \]

\(\rho_0 \)

\(h(t) \)

\(\rho_0 + \Delta \rho \)

\(U(t) \)

\[\text{a) } \]

\[\text{b) kevert folyadék} \]

\[\rho_0 \]

\(h(t) \)

\(\rho_0 + \Delta \rho \)

\[U(t) \]

5.32 ábra: Gravitációs áramlat sematikus képe. a) Keverés mentes, ideális eset. b) A Kelvin–Helmholtz-instabilis fás kialakulására vezet, mely mögött jól kevert folyadékreteg marad vissza. A viszkozitás miatt a fej kissé előre redukodik.

A redukált sekélyfolyadék-közlekedésben a gravitációs áramlás \(U \) haladási sebessége megbecsülhető a keskeny réteg pillanatnyi \(h \) vastagságának függvényében (5.32a ábra). Az \(U \) sebességű áramlás \((\rho_0 + \Delta \rho)U'^2/2 \approx \rho_0 U'^2/2 \) kinetikus energiasűrűsége ugyanis megegyezik azzal a nyomáskülönbséggel, mely a frontonal és a mögötti húzdó \(h \) vastagságot réteg belseje között kialakul. A frontvonal helyén a nyomás \(\rho_0 gH \), ahol \(H \) a teljes folyadékvastagság, a \(h \) vastagságú réteg alján pedig \(\rho_0 g(H - h) + (\rho_0 + \Delta \rho)gh \). A különbség \(g\Delta \rho h \)-val egyenlő. Ebből

\[U'^2 = 2g_1 h. \]

Ez tehát a front pillanatnyi sebessége és vastagsága közötti kapcsolat. A front terjedési sebessége nagyobb az ugyanolyan átlagos mélységű réteg határán terjedő belső gravitációs hullámok \(\sqrt{g_1 h} \) sebességénel, belső Froude-száma \(Fr' = \sqrt{2} \).

Eddig feltételeztek, hogy a két különböző sűrűségű közeget elválaszthatjuk felület a mozgás során élesen definiált marad. A valóságban a gravitációs áramlat elején erős keveredés történik a két közeg között. A gravitációs áramlások elején ezért a hátsó \(h \) rétegvastagságnál valamivel magasabb 'fej' alakul ki (5.32b, 5.33 ábra), melynek hossza a rétegvastagságnak csak néhányszorosa. Ennek elején a határfelület még éles és sima, de a jelentős sebességkülönbség miatt instabillá válik. A gyorsan áramló folyadékrétegek között mindig fellépő Kelvin–Helmholtz-instabilis (1.5.16 fejezet) miatt a fej felső határán az elválasztott felület begyűrődik, benne jellegzetes örvények alakulnak ki, melyek távolasága és kiterjedése összehomorú a fej vastagsgával. Az egész folyamat tehát bonyolultabb annál, hogy a redukált sekélyfolyadék-modell minden részletében helyesen írassa le.

A keveredés és a véges \(H \) teljes folyadékmélység figyelembevételével a \(h \) vastagságú gravitációs áramlat sebessége írható mint

\[U = \sqrt{g_1 h f \left(\frac{h}{H} \right)}, \]

ahol \(f \) csak a \(h/H \) mélységi arány függvénye. A mérések szerint az \(f \) értéke eltűnő mélységi arányra közel van \(\sqrt{2}/h \)-höz, \(s h/H \)-val enyhén csökken.

Elegendően kis viszkozitás, vagyis nagy \(U h/\nu \) Reynolds-szám mellett az áramlási sebesség nem függ a viszkozitástól. A felületre vonatkozó tapadás peremfeltétel miatt viszont az áramlat
egy alsó határétegen síklik, s ezért jól megfigyelhető, hogy a fej kissé felemelkedik, a sűrű közeg legelől levő pontja nem az aljzaton, hanem valamivel fölötté helyezkedik el.

5.33 ábra: Laboratóriumban létrehozott gravitációs áramlat feje. A felső fekete sáv a könnyű folyadék felszíne.

A gravitációs áramlatokkal kapcsolatos jelenségek sora igen hosszú. Kezdve az olyan hétköznapos folyamatokkal, mint a hideg leégő szokása történő beáramlása, a bányafolyócekben a metán (bányaág), a tenger felszínén az olajszénfelfüggesztése széterjedéséig, számos természeti jelenséggel kapcsolatos.

A légkörben minden lokalizált lehűlés hideg áramlatokat okoz. A jól ismert parti vagy tavi, tengeri szeleken kívül ilyen a nagy zivatarok előszele, a kifutó szél. A zivatarfelhőkben kialakuló eső hideg leégő leáramlását okozza, mely a Föld felszínére kerülve gravitációs áramlat formájában terül szét (5.34 ábra). A hideg szeleket a felkavart por vagy homok teheti láthatóvá (5.35 ábra). Mivel a 6 fokos hőmérsékletkülönbség a hőtágulás miatt (l. 14.1 táblázat) mintegy 2 százalékos sűrűségkülönbségnek felel meg, s az ilyen kifutó áramlás vastagsága kb. 1 km, a front (5.83) sebessége \(U = \sqrt{2gh} = \sqrt{400} \text{ m/s} = 20 \text{ m/s} \) (több, mint 70 km/h). Ugyanakkor a zivatarfelhőben feláramló meleg levegő a troposzféra felső határát alkotó tropopauzába ütközik, s annak mentén folyik szét. Mivel itt már kicsapódás történik, ez a gravitációs áramlat jól látható a viharfelhő mozgó üllőjeként (5.34 ábra).

5.34 ábra: A zivatar előszele és a felhő üllőjének mozgása is gravitációs áramlat.

A folyótorlólatok előtti sekély vízeken a dagállyal érkező sós tengervíz hoz létre alul sós gravitációs áramlatot, mellyel a felszínen kiáramló edesvízi front társul (5.36a ábra). A sós tengerek vize is gravitációs áramlatokon keresztül jut el a hígabb óceánokba. Így pl a Földközi-tenger vize gravitációs áramlatot alkotva jut a Gibraltári-szoroson át az Atlanti-óceán közepes
5.35 ábra: A kifutó szél által felkavart por kirajzolja a gravitációs áramlat hideg levegőjét [www.usgcrp.gov/usgcrp/images/duststorm.jpg; www.damtp.cam.ac.uk/user/fdl/people/jes14/].

Vízréttegeibe (5.36b ábra), míg a felszínen az oceáni víz áramlik a tenger felé. Ha ez az áramlás eléggé erős, undulált bore-t hoz létre maga előtt, melynek nemlineáris gravitációs hullámait megfigyelhetők (l. 5.31 ábra). A tengerekben kialakuló gravitációs áramlatok tipikus sebessége m/s körül.

5.36 ábra: Gravitációs áramlatok tengeren. a) A dagály érkezésekor sós víz áramlik a torkolati területek alsó rétegeiben és ez felső édesvízi gravitációs áramlatot is indít. b) A különböző sokcentrációjú tengerek vízcsereje is gravitációs áramlatok formájában zajlik szorosokon keresztül. A felszínen könnyebb tengervíz folytonosan rögzíthető, ezért a gravitációs áramlat csak saját sűrűségének eléréségéig történik.

Gravitációs áramlat a lavina is, melyben a levegővel keveredett hó jelenti a mozgó kőzeget. Kevésbé nyilvánvaló, de gravitációs áramlatnak tekintethető számos kőomlás, földcsuszamlás, a visszahulló vulkáni hamu mozgása, vagy a lávafolyás is. Bár az eredeti kőzegek nem folyadékok, ha valamilyen erős lezdeti hatás (pl. földrengés) miatt mozgásba lendülnek, a mozgás során főlíthatók, fluidizálódnak. A mozgó kőarabok egyre erősebben ütköznek egymással, s emiatt egyre távolabbra kerülnek, a rendszer egyre hágabb lesz. Lávafolyás közben pedig a magas hőmérséklet miatt gázok szabadulnak fel a talajból, s ez lazítja a mozgó kőzeget. Természetesen ilyenkor a kőzegek sűrűsége mellett a levegő elhanyagolható, s ezért g′ ≈ g. Ez már 10m-es kőzegegységság esetén is U = 10 m/s-os sebességre vezet.

5.15 Belső szolitonok

Két különböző sűrűségű réteg határfelületén kialakulhatnak kídudorodások vagy behorpadássok, melyek alakjukat megtartva a sekély folyadék dinamikájának megfelelő c1 belső hullám sebességénél
gyorsabban terjednek, s a sebesség függ a kiduródás nagyságától.\footnote{Használatra a külső felszíni szolitónokhoz, l. 2.10 fejezet.}

Elhanyagolható kisőső felszíni változások esetén a H_1 és H_2 átlagos vastagsági rétegek határán a pozitív x irányban haladjó, χ_0 amplitudójú belső szolitón (5.37 ábra) sebessége

$$U = c_1 \left(1 + \frac{\chi_0}{2h_0} \frac{H_1 - H_2}{H_1 H_2} \right), \tag{5.85}$$

ahol c_1 a sebész folyadékbeli belső hullám (5.66) sebessége. Az elmélet szerint az χ_0 amplitudónak mindkét rétegvastagságnál jóval kisebbnek kell lennie. Végül össze, hogy a sűrűségkülönbség csak a c_1 belső hullám sebességen keresztül jelenik meg. A szolitónok mindig gyorsabban a lineáris hullámoknál: $U > c_1$. A fenti képlet így azt mutatja, hogy vastag alsó réteg, $H_2 > H_1$ esetén az amplitudónak negatívnak kell lennie. Ilyenkor tehát a szoliton a réteghatár lefelé történő elmozdulásával jár (5.37b ábra). A belső szolitón mindig a keskenyebb réteg lokális megvastagodása.

5.37 ábra: A belső szolitón az elválasztott felület kiduródásával jár. Ez felfelé történik, ha az alsó réteg keskenyebb a felsőnél (a), és lefelé, ha az alsó réteg vastagabb (b).

A szolitón l félszélessége is amplitudófüggő az

$$l^2 = \frac{4}{3} \frac{H_1^2 H_2}{\chi_0 (H_1 - H_2)} \tag{5.86}$$

összefüggés szerint.\footnote{Az egyforma rétegvastagságot jelentő $H_1 = H/2$ esetben szolitont a fenti képlet szerint nem létezik az eldug használt Boussinesq-közletésházban, ahol mindent csak a sűrűségkülönbségben vezető rendig határoznak meg. A részletes elemzés szerint ilyenkor a c_1-hez adódó korreláció a sűrűségkülönbséggel arányos, l^2 pedig ennek reciprokával. $(U - c_1)$ és l tehát véges, szolitón létezik, de jóval lassabb és szélesebb, mint az eltérő rétegvastagságokhoz tartozók.}

A nagyon keskeny alsó réteg, $h_0 \equiv H_2 << H$, határesetében, mely a redukált sebész-folyadék-modell analógja, (5.85), (5.86)-ből

$$U = c_1 \left(1 + \frac{2h_0}{\chi_0} \right), \tag{5.87}$$

\footnote{A χ belső felszíni alak kielégüti a (9.17) KdV-egyenletet a $c_0 \rightarrow c_1$, $3\chi_0/(2H) \rightarrow 3c_1(H_1 - H_2)/2(H_1 H_2)$, $c_0 H_2^2/6 \rightarrow c_1 H_1 H_2/6$ helyettesítéssel. A szolitón-megoldás: $\chi(x,t) = \chi_0 c_1^2 (x - Ut)/l$, a sebességek $u_1 = -\chi_0 H_1/H_2$ és $u_2 = c_1 \chi_0/2H_2$ a felszíni alak pedig $\eta = -\chi H_2/\chi_0$.}

\footnote{Az egyforma rétegvastagságot jelentő $H_1 = H/2$ esetben szolitont a fenti képlet szerint nem létezik az eldug használt Boussinesq-közletésházban, ahol mindent csak a sűrűségkülönbségben vezető rendig határoznak meg. A részletes elemzés szerint ilyenkor a c_1-hez adódó korreláció a sűrűségkülönbséggel arányos, l^2 pedig ennek reciprokával. $(U - c_1)$ és l tehát véges, szolitón létezik, de jóval lassabb és szélesebb, mint az eltérő rétegvastagsághoz tartozók.}
\[f^2 = \frac{4 h^3}{3 \chi_0^2} H \] (5.88)

A terjedési sebesség ugyanúgy függ az alsó réteg vastagságától, mint szabad felszíni társáé a teljes mélységtől, de most a belső hullámok \(c_1 = \sqrt{g \hbar / \chi_0} \) sebességével arányos (I. 2.10 fejezet).

A légkörben a hideg áramlások hegyekről való visszaverődése vezethet belső szolitonokhoz. A tengeri belső szolitonokat vonalhullámoknak is megtekinthetik a termoklin zónában. Amplitudójuk néhány szor 10 m is lehet, sebességük m/s nagyságrendű, hosszuk a több 10 km-t is elérheti.

Érdemes röviden összehasonlítani az eddig tárgyalt nemlineáris jelenségeket a kis amplitudójú belső hullámokkal. A legszembenetűnből különbség, hogy míg a lineáris hullámban a sebességtér periodikus, s ezért azt nem kíséri anyagáram csak energiaáram, addig a nemlineáris hullámok jelentős folyadékelmozdulással járnak. Ez fejzódik ki abban, hogy \(U \) átlagsebességük véges, sőt nagyobb a belső hullámok terjedési sebességnél (szuperkritikusak, belső Froude-számuk 1-nél nagyobb). A belső bore és a gravitációs áramlatok esetén kiterjed tartományokban zajlik az anyagmozgás, a belső szoliton által okozott viszont a szoliton 2 méterre korlátozódik.

A vizsgált nemlineáris jelenségek egymáshoz is kapcsolódnak. Ha a nemlineáris effektusok lényegesebbek a diszperzióból adódóknál, akkor gravitációs áramlat vagy bore alakul ki. A gravitációs áramlat maga is létrehozhat belső bore-t abban a kézegben, melybe behatol. Ha bármelyikük akadályon ütközik, energiájuk csökken, s a nemlineáris és diszperziós hatás összemérhetetlen válhat. Ha így van, a visszaverődött hullám belső szoliton alakjában mozog a két eltérő sűrűségű közeg határán. Laboratóriumban is könnyen lehet belső szoliton kelteni gravitációs áramlat fallal történő ütközésére révén (5.38 ábra).

5.38 ábra: Belső szoliton laboratóriumban egy gravitációs áramlat falon történő visszaverődése után alakul ki.

5.16 Kelvin–Helmholtz-(KH)-instabilitás

5.16.1 Szemléletes kép

Tekintsük két kissé eltérő sűrűségű, egymás felett elhelyezkedő vastag folyadékréteget, melyek egymáshoz képest \(\Delta U \) relatív sebességgel áramolnak a vízzintes síkban. Legyen az alsó közeg sűrből és tegyük fel, hogy kiinduláskor az elválasztó felülett sík. Vizsgáljuk meg, hogy a felület kis deformáció után a kezdett állapot felé indul vissza, vagy éppen távolodik tôle, vagyis a sík elválasztó felület stabil-e. Az, hogy a kimozdított felület milyen irányban mozog el, függ a deformáció hullámhosszától. Ha csak egyetlen hullámhossz is létezik, melyre távolodás történik, akkor a felület már stabil.

Mivel \(\Delta \mu \) véges (ha kicsi is), a \(\Delta U \) relatívból sebesség megszűnésekor instabilitás nem léphet fel, hiszen a sztratifikáció stabil. Véges sebességkülönbség esetén csak valamilyen \(\lambda_c \) kritikus hul-
lámhosszú, vagy annál rövidebb zavarok válthattak instabillá, s \(\lambda \)-nek \(\Delta U \) csökkenésével egyre kisebbnek kell lennie. Amíg a folyadékřéteg \(H \) vastagsága sokkal nagyobb a kritikus hullámsszámnál, a probléma legfontosabb hosszúságjellegű paraméterre \(\lambda \). Az instabilitás szempontjából nyilván lényeges a \(g' \) redukált gyorsulás is. A \(\Delta U', g' \) és \(\lambda \) mennyiségekből csak egy dimenzióltan szám alkotható, az

\[
\frac{(\Delta U)^2}{g' \lambda_c}
\]

kritikus hullámhosszal képzett belső Froude-szám. Ezt egységnyínek tételezve azt kapjuk, hogy \(\lambda \) arányos \((\Delta U)^2/g' \)-vel.

Az instabilitás tehát olyan \(\lambda \) hullámhosszú zavarokra áll fenn, melyek rövidebbek a kritikus hullámhossznál, tehát amelyekre

\[
\lambda < \lambda_c \equiv C \frac{(\Delta U)^2}{g'}
\]

Itt \(C \) egy dimenzióltan szám, mely enyhén függhet a \(H \) vastagságtól az \(Fr' = \Delta U/\sqrt{g' H} \) hagyományos belső Froude-számot keresztül. Mély közegben, amikor \(Fr' \to 0 \), a \(C \) konstans \(\pi \)-nek adódik (l. következő alfejezet). A kritikus hullámhossz a légkörre jellemző 10 m/s-os sebességkülönbséggel és tisztes redukcióval \(\lambda_c = 300 \) m, éppúgy, mint \(\Delta U = 1 \) m/s sebességkülönbség és a tengerben gyakori ezerszeres redukció esetén.

Véges sebességkülönbség esetén tehát mindig létézik olyan egérdően rövid hullámhosszú perturbáció, melyre nézve a sima felület instabil. Első leírójukról ezt a jelenséget Kelvin-Helmholtz-instabilitásnak nevezzük. A különböző vízszintes áramlásokat elválasztó felületek tehát nem maradnak sámik. Vegyük észre, hogy ez azonos sűrűségű (\(g' = 0 \)) rétegekre méginkább igaz, ett olyan semmilyen hullámhosszú perturbáció sem stabil. A sűrűségkülönbség tehát valamelyest stabilizálja a helyzetet, de csak nagy hullámhosszakra.

Az instabillá vált felület először valamilyen \(\lambda < \lambda_c \) hullámhosszal egyre nagyobb amplitudójú kitérozást mutat, de előbb-utóbb elhagyjuk a lineáris viselkedés tartományát, s a felületi alak már nem írható le szinuszfüggvényvel. A tapasztalat szerint a határfelület begyűrődik, és a megtörő felszíni hullámokhoz (pl. tengerhullámokhoz) hasonló alakot rajzol ki meglepő szabályossággal. A folyamatot a sematikus 5.39 ábra szemlélteti. A nemlineáris hullám amplitudójá összemenhető a hullámhosszal, s a végállapotban egy \(\lambda \)-val arányos vastagságú réteg válik levert sűrűségűvé.

5.39 ábra: A két folyadékot elválasztó felület időfejlődése a relativ sebességkülönbség hatására kialakuló Kelvin-Helmholtz-instabilitás következtében. A megfigyelt periodicitás a \(\lambda \) kritikus hullámhossz nagyságrendjébe esik.

Az instabilitás két, kezdetben vízszintesen elhelyezkedő egymásra rétegzett folyadékřéteg tartályának megkötésével laboratóriumiakban is jól tanulmányozható (5.40 ábra). Ha az elválasztó felület a kicsapódási zónában van, akkor a Kelvin-Helmholtz-mintázat felhőképekben is kírajzolódik (5.41 ábra), s az ún. hullámfelhők (billow clouds) kialakulásához vezet.
5.40 ábra: Kelvin–Helmholtz-instabilitás leírható egy kétágú folyadékot tartalmazó edény megdöntésével [Van Dyke].

5.41 ábra: Kelvin–Helmholtz-belítők két egymáshoz képest mozgó légréteg határán [www.atmos.washington.edu/atlas/IMG.32.jpg].

5.16.2 Lineáris stabilitást vizsgáló

Az egyszerűség kedvéért tegyük fel, hogy mindkét folyadékére nagyon vastag, s legyen az elválasztófelület a \(z = 0 \) sík. Válasszuk az alsó, \(\rho_0 + \Delta \rho \) sűrűségű közéget negatív irányban mozgónak. Átlagsebessége legyen \(-U \equiv -\Delta U/2 < 0 \). A felette elhelyezkedő \(\rho_0 \) sűrűségű folyadék mozgján az \(U \equiv \Delta U/2 \) átlagsebességgel a pozitív irányba. Ez azt jelenti, előírjuk, hogy a vízszintes sebességkomponens nagy negatív (pótív) \(z \) értékekre \(-U \)-hoz (U-hoz) tartson. Tegyük fel, hogy a kialakuló áramlás az \(y \) irányban eltolásinvariáns. Jelölje az elválasztó felület pillanatnyi alakját a \(\chi(x,t) \) függvény.

Bevezetjük a hidrostatisztikus nyomáselosztástól való eltérést megadó \(p' \) nyomásengedélyt. A teljes nyomás tehát írható mint

\[
p = p_0 - \rho_0 g z + p' \quad \text{ha} \quad z > \chi, \quad (5.91)
\]

és

\[
p = p_0 - \rho_0 g \chi - (\rho_0 + \Delta \rho)g(z - \chi) + p' = p_0 + \Delta \rho g \chi - (\rho_0 + \Delta \rho)g z + p' \quad (5.92)
\]

eyébként. Az Euler-egyenlet az alsó közegben

\[
\frac{d\mathbf{u}_2}{dt} = -g' \frac{\partial \chi}{\partial x} \frac{1}{\rho_0} \frac{\partial p'}{\partial x} - \frac{1}{\rho_0} \frac{\partial p'}{\partial z}, \quad \frac{du}{dt} = - \frac{1}{\rho_0} \frac{\partial p'}{\partial z}, \quad (5.93)
\]
ahol \(g' \) az (5.6) redukált gravitációs gyorsulás. A felső folyadékére ugyanez az egyenlet a felületi alak deriváltja nélkül érvényes (\(g' \) formálisan eltűnik). Az áramlás az \((x,z) \) síkban összenyomhatatlan, ezért mindkét közegben létezik egy \(\psi_i(x,z,t) \) áramlási függvény, mellyel \(u_i = \)
\(-\partial^2\psi_1/\partial z^2 + \omega^2 \psi_1, \quad i = 1, 2.\) Feltehetjük, hogy az áramlás örvénymentes, hiszen mindkét közeg homogén, s így y irányú forgatónyomaték nem hat a folyadékelemekre. Ezért \(\psi_i\)-nek ki kell elégtenie a Laplace-egyenletet, hiszen az örvényesség y komponense \(\partial u_i/\partial y - \partial w_i/\partial x = 0.\) Így

\[
\Delta \psi_i = 0 \quad i = 1, 2.
\]

(5.94)

Tekintsük most mindkét közegben a háttérsebességtől való eltérést leíró \(\psi_1^\prime\) áramlási függvényeket, melyekre

\[
\psi_1 = -Uz + \psi_1^\prime, \quad \psi_2 = Uz + \psi_2^\prime.
\]

(5.95)

Kis eltérések esetén mind \(\psi_1^\prime\)-et, mind \(\psi_2^\prime\)-t az exp \((i\omega t - ik_x x - ik_z z)\) alakban keresve, a Laplace-egyenlet a \(k_x^2 + k_z^2 = 0\) megszorítást jelenti. Mivel \(x\) irányban hullámalakot tetelezünk fel, \(k_x\)-et valósnak (sőt pozitívnek) választjuk, de ekkor

\[
k_z = \pm ik_x.
\]

(5.96)

imaginárius. Ez a függőleges irányban exponenciális változást jelent a \(k_x\) lecsengési ráttal. A végteleben tartó megoldás kizárásával a felső közegben a negatív, az alsóban a pozitív előjelet tartjuk meg:

\[
\psi_1^\prime = \psi_{10} e^{i\omega t - ik_x x - k_z z}, \quad \psi_2^\prime = \psi_{20} e^{i\omega t - ik_x x + k_z z}.
\]

(5.97)

A sebességtér tehát exponenciális gyorsasággal tart a homogén áramláshoz.

A diszperziós reláció az elválasztó felületre vonatkozó határértékekkel adódik. A függőleges áramlási sebesség a határ mindkét oldalán úgy írható, mint az elválasztó felület teljes deriváltja: \(w_1 = \partial \chi/\partial t + u_1 \partial \chi/\partial x,\) és \(w_2 = \partial \chi/\partial t + u_2 \partial \chi/\partial x.\) Az \(u_1 = U,\) \(u_2 = -U\) sebességű homogén áramlás körül linearizálva,

\[
w_1 = \frac{\partial \chi}{\partial t} + U \frac{\partial \chi}{\partial x}, \quad \text{ill.} \quad w_2 = \frac{\partial \chi}{\partial t} - U \frac{\partial \chi}{\partial x}.
\]

(5.98)

A feláramlás sebességek tehát eltérnek a felület két oldalán, hiszen a hátláramlás is ad járuléket ott, ahol a felület nem vízszintes. A megoldást a \(\chi(x,t) = \chi_0 \exp (i\omega t - ik_x x)\) alakban keresve és a függőleges sebességet az áramlási függvényrel \(w_i = \partial \psi_i/\partial x\) szerint kifejezve (5.98)-ből a

\[
-k_x \psi_{10} = (\omega_0 - U k_x) \chi_0 \quad \text{ill.} \quad -k_x \psi_{20} = (\omega_0 + U k_x) \chi_0
\]

(5.99)

összefüggést kapjuk.

A \(\partial^2 \psi/\partial x\) vízszintes nyomásgradientis folytonosságából a felületen (5.93) alapján fenn kell állnia a

\[
\frac{\partial u_2}{\partial t} + u_2 \frac{\partial u_2}{\partial x} + w_2 \frac{\partial w_2}{\partial z} + g' \frac{\partial \chi}{\partial x} = \frac{\partial u_1}{\partial t} + u_1 \frac{\partial u_1}{\partial x} + w_1 \frac{\partial u_1}{\partial z}
\]

(5.100)

megszorításnak. Ennek linearizált változata a \(\psi_i^\prime\) áramlási függvényekkel:

\[
-\frac{\partial^2 \psi_2^\prime}{\partial t \partial z} + U \frac{\partial^2 \psi_2^\prime}{\partial x \partial z} + g' \frac{\partial \chi}{\partial x} = -\frac{\partial^2 \psi_1^\prime}{\partial t \partial z} - U \frac{\partial^2 \psi_1^\prime}{\partial x \partial z}.
\]

(5.101)

A \(\psi_i^\prime\)-kre vonatkozó (5.97) alakok behelyettesítésével:

\[
-(\omega_0 + U k_x) k_x \psi_{20} - g' k_x \chi_0 = (\omega_0 - U k_x) k_x \psi_{10}.
\]

(5.102)

(5.99) alapján az

\[
(\omega_0 + U k_x)^2 - (\omega_0 - U k_x)^2 = -g' k_x
\]

(5.103)

másodfokú egyenletet kapjuk. Ebből

\[
\omega_0 = \pm \sqrt{\frac{g'}{2} k_x - U^2 k_x^2}
\]

(5.104)
5.42 ábra: A k_c hullámszámú perturbáció instabilitási exponense a Kelvin–Helmholtz-instabilitásban. A k_c kritikusnál kisebb hullámszámú perturbációk stabilak, instabilitási exponensük nem értelmezett.

Amikor mindkét közeg nyugalomban van, azaz $U = 0$, a frekvencia valós: $\omega_0 = \pm \sqrt{(g'/2)k_c}^{15}$. Véges U áramlású sebességekre a frekvencia sohasem valós minden hullámszámra. A

$$k_c = \frac{g'}{2U^2}$$

hullámszámánál nagyobbak esetén

$$\omega_0 = \pm is.$$

Az

$$s = \sqrt{U^2 k_c^2 - g' k_c/2} = \sqrt{g' k_c (k_c/k_c - 1)/2}$$

mennyiség neve *instabilitási exponens*, mert a $k_x > k_c$ tartományban az $\exp (i \omega_0 t) = \exp (\mp st)$ faktorok közül a pozitív előjelű exponenciálisan növekvő időfüggést ír le (l. 5.42 ábra). A kritikus hullámhossz $\lambda_c = 2\pi/k_c = \pi (\Delta U)^2/g' = 4\pi U^2/g'$. Az (5.90)-ben fellépő együttható tehát $C = \pi$.

Csakis a k_c-nél kisebb hullámszámú, azaz a λ_c-nél nagyobb hullámhosszú perturbációk stabilak.

Az instabilitási exponens a kétszeres kritikus hullámszám, $k_x = 2k_c$ esetén $s = g'/\sqrt{2U}$, mely arányos $\Delta U/\lambda_c$-vel. A harmonikus hullámok gyorsan megszűnik, hiszen az amplitudójára annyi idő alatt, amíg a két rétegen levő részeckék a kritikus hullámszámnak megfelelő távolságra kerülnek, már c-szeresére nő.

5.17 Termikus konvekció

Az eddig tárgyalt jelenségekben a hőmérséklet passzív szerepet játszott, mintegy a sűrűséggel vándorolt megmaradó mennyiségként. A kiskállájú jelenségekben azonban a hővezetés jelentős. A hőmérsékletre vonatkozó egyenlet a

$$\frac{dT''}{dt} = \kappa \Delta T''$$

hődiffúziós egyenlet. Itt T'' a T_0 referenciahőmérséklettől való eltérés. Ezzel megjelent egy új paraméter, a κ hődiffúziós állandó, mely új dimenzióban szám (okk) al is együttjár. Homogén anyagi összetételű közegben a $\varrho = \varrho_0 (1 - \alpha (T - T_0))$ állapotegyenlet értelmében (α a hőtágulási együttható)

$$\varrho' = -\alpha \varrho_0 T''.$$

\(^{15}\)Ez a két mély folyadékretéget határoznak kialakuló belső hullám diszperziós relációja. A hullám, szemben a sebés rétegek között kialakuló társával diszperzív.
A hővezetési egyenlet ekkor tehát a (5.12) sűrűségegyenlet általánosítását jelenti. Mivel a hővezetés alapvető elterjedés jelent az ideális folyadék leírástól, melyben csak adiabatikus folyamatok létezhetnek, a hővezetés mindig disszipációval, viszkozitással párosul.

Az egyik legfontosabb új jelenség a konvekció, az alulról történő egyenletes melegítés hatására kialakuló áramlás. Az áramlás jellegzetes vízszintes síkbeli lineáris mérete ekkor mindig összemosztható a folyadék H mélységével. Az (5.108) egyenlet szerint a jellegzetes U sebességet a hődiffúzió szabja meg. Abból a tényből, hogy a $(\nabla T$ és a $\kappa \Delta T$ tagok összemoszthatók, a sebesség nagyságrendje $U = \kappa / H$. A sebesség tehát nem szabad paraméter, mint eddig, mert most az áramlást a hővezetés változa ki. A konvekció által jellemző legfontosabb dimenziótlan szám a Rayleigh-szám

$$Ra = \frac{g \alpha \Delta T H^3}{\nu \kappa},$$

ahol ΔT a T' eltérés jellegzetes értéke, pl. a folyadék alja és teteje közötti hőmérsékletkülönbség. Ez a szám nem más, mint a $g \alpha \Delta T$ felhajtóerő viszonya a $\nu U / H^2 = \nu \kappa / H^3$ viszkozus erőhöz:

$$Ra = \frac{\text{felhajtóerő}}{\text{viszkozus erő}}.$$

Áramlás nyilván akkor indul be, ha a felhajtóerő, azaz a hőmérsékletkülönbség éle növekszik a magasságával. Végül később, hogy az ilyen sztratifikáció hővezetés nélkül instabil, a Brunt–Väisälä-frekvencia négyzeté negatív! A hődiffúzió képes stabilizálni olyan rétegzetteséget, mely anélkül már régen felbomlana. Ez a stabilizálódás azonban nem terjedhet minden határon túl, és a kritikus Rayleigh-szám éppen azt fejezi ki, hogy a felhajtóerő mikor győzi le a hődiffúzió stabilizáló hatását.

A kritikus Rayleigh-szám értéke függ a geometriai elrendezésektől és a peremfeltételektől. Vízszintes síklapokkal lezárta tartomány esetén $Ra_c = 1708$. A kritikus Rayleigh-számmal a λ_c kritikus hullámhossz válítható instabil, melynek típusú értéke

$$\lambda_c \approx 2H,$$

azaz a felhullámhossz egyezik meg a folyadékmélységgel.

A közvetlenül az Ra_c fölött kialakuló új stabil állapot egy időtől független, de térben valamilyen periodicitást mutató stacionáris áramlás. Az áramlás cellás szerkezetű, melynek periodicitását az instabillá vált kritikus hullámhossz határozza meg. Amennyiben az elrendezés egy irányban eltolásvariaszió, az áramlás szemben forgó hengerek kialakulására vezet (5.43 ábra), melyek között felváltva fel és leszálló áramlasi zónák helyezkednek el. Kevésbé szabályos perem esetén általában hatszög alakú cellák alakulnak ki, melyekben pl. középen történik feláramlás, a hatszög oldalai mentén pedig leáramlás.

A kritikus Rayleigh-szám néhány szorosának megfelelő feltéte esetén egyre bonyolultabb és már időfüggő áramlások jönnek létre, melyek karakteristikus mérete eltérhet a λ_c hullámhosszáktól. A feláramlás típusú sebessége abból becsületető meg, hogy az $a \alpha \Delta T$ felhajtóerőt a $\nu W / H^2$ viszkozus erő lényegében kompenzálja, melyből:

$$W = \frac{a \alpha \Delta T H^2}{\nu}.$$ (5.114)
5.43 ábra: Stacionárius konvekciós áramlás. Közvetlenül a kritikus hőmérséklet-különbség (kritikus Rayleigh-szám) előállása után szabályos, hengeres áramlási cellák alakulnak ki, ha a geometria irányban eltolásinvariáns.

A \(\frac{WH}{\kappa} \) dimenzió濡l feláramlás sebesség tehát a Rayleigh-számmal arányos. A feáramlás sokkal gyorsabb, mint a hődiffúzió jellegzetes \(\kappa/WH \) sebessége, a konvekció tehát jóval hatékonyabb transzportfolyamat, mint a hővezetés.

Nagyon nagy Rayleigh-számok mellett az áramlás a peremfeltételtől is függetlenül szabályaltávolságú, turbulensé vállik. Ilyenkor a viszkozitás már nem meghatározott paraméter. A feláramlás átlagos sebességét a folyadékrétegen átfolyó hőáram határozza meg.

A légköiri és óceáni tipikus értékekkel számolt Rayleigh-számok jóval nagyobbak \(Ra_c \)-nél. Mivel \(\kappa_{vis} = 1,4 \cdot 10^{-7} \) m\(^2\)/s, \(\kappa_{lev} = 2,1 \cdot 10^{-5} \) m\(^2\)/s (l. 14.1 táblázat) és a \(H \) rétegvastagság a harmadik hatványon jelenik meg, \(Ra \) értéke meghaladja a 10\(^{15} \) értéket. Mindössze egy fok különbséggel számolva, a planetáris határérgben (\(H = 1 \) km) \(Ra = 10^{17} \), az óceáni levedési rétegben (\(H = 100 \) m) pedig\(^{16} \) \(Ra = 10^{16} \). Az \(Ra_c \) értéknel kialakul elôsí instabiliitást azért nem tárgyaljuk részletesebben, mert környezeti áramlásonként jelentősége csökken.

A természetes közegek tipikus konvekciója a szabályostól 2. felelek eltér, hiszen a Rayleigh-szám sok nagyságrenddel meghaladja a kritikusat. A jellegzetes folyamat a termékek kialakulása, melyek laboratóriumban is jól tanulmányozhatók (5.44 ábra). A felmelegezett folyadéklégsomagok véletlenszerûen szakadnak el az alsó peremtől (5.45a ábra). Az egész áramlás a szabályos hat-szöges áramlás térben és idôben is szabályaltávolságú vált esetének tekintethetô. A felszálló meleg közeg peremén örvényesség keletkezik, ezért a termékek sebességére hasonlit egy felfélé mozgó örvénygyûrûjéhez (5.45b ábra), hőmérsékleteloszlásuk pedig gombezes terjedése (5.45c ábra). Az áramlás a peremén erôs hat turbulenessé vállik. A kicsapódási szintet elérve a légköiri termékek alakja kijelzôdik a gomolófelhôt képen. A termékek mellett mérszköz mozgás történik, s rendezetlen, turbulens áramlási rendszer alakul ki.

A légköiri termékek alakja a kicsapódási szint elôzése után a gomolófelhôt képen rajzolódik ki. A termékek által dominált turbulens levedés vezet a planetáris határérg jó levedéséhez (l. 7.5, 7.6 fejezet). A termékek legerôsabb változata a nagy zivatarfelhôk kialakulásához vezetô gyors konvekciós feláramlás, melyet a vízpára kicsapódásakor felszabaduló hő még gyorsít az. Az ilyen termékek szélessége 10 km is lehet, feláramlás sebessége néhány m/s, s feljuthatnak a tropcszféra tetéjeig.

A természetes vizek konvekcióját általában az éjjeli vagy az őszi-téli felszíni hűtés válta ki. Az edesvízi tavakban össze kialakuló turbulens konvekció a víz hőmérsékletének homogenizálódásához vezet. A 4 fokos hőmérséklet elôzése után már csak a felszín hûl tovább, mert

\(^{16}\)A nagyon nagy Rayleigh-szám ellenére a légköri hatás idôként mégis megfigyelhetô hengeres áramlás. Stabilizálódásában ezért konvekció kívüli tényezônek (pl. a szélnek) is szerepet kell játszania. A reggeli órákban a gyermekek melegedô talaj az alsó légválasztó fúri, s a siker felszín fölött valóban kialakulhat az 5.43 ábrán mutatott hőmérséklet-különbség áramlás. A felszálló órákban a levegô elérheti a kicsapódási szintet, mely párhuzamos felhősávok megjelenésére vezet.
5.44 ábra: Meleg termíkek felszállása alulról melegített közegben.

a víz 4 fokon a legsűrűbb. A rétegződés stabil, mert 4 fok alatt a hőtágulási együttható már negatív. Ez az anomális viselkedés az oka annak, hogy a tavak nem fagynak be teljes mélységükben, s annak is, hogy a tavaszi felszínű melegedés képes konvekcióni beindítani \(\alpha, \Delta T < 0 \), de \(Ra > 0 \). A tengerek felszínén télen a sós víz \(-1,7\) fokos is lehet, a 100 m körüli mélységben viszont \(+1\) fok, s ez turbulens konvekciónhoz vezet. A sarkok közeli tengerekben a levegő és a víz közötti hőmérsékletkülönbség igen erős felfelé irányuló hőáramot vált ki, mellyel 10 cm/s körüli feláramlás társul.

a)

b)

c)

5.45 ábra: Termik szerkezete. a) A felszállás három fázisa (a vonal a hideg-méleg határfelületet mutatja). b) Áramvonalak az \((x,z)\) síkmetszeten. c) Izotermák az \((x,z)\) síkmetszeten.

A konvekción fontos szerepet játszik a Föld mintegy 3000 km mélységig terjedő középyében. A középy szilárd anyaga igen hosszú időskálán folyadékként viselkedik. E folyadék természetesen igen erősen sűrűdő: viszkozitási együtthatója \(\nu = 10^{17} \text{ m}^2/\text{s} \)-mal becsülhető\(^7\). A hőtágulási és a hővezetési együttható a nem fémes szilárd anyagoknak megfelelő \(\alpha = 2 \cdot 10^{-5} \text{ 1/fok} \) és \(\kappa = 10^{-6} \text{ m}^2/\text{s} \). A Rayleigh-szám \(H = 3000 \) km-es vastagsággal és 2000 fok hőmérsékletkülönbséggel számolva \(Ra \approx 10^5 \). Ez mutatja, hogy a konvekción a földköpenyben is turbulens. A felszálló termíkek mozgatják a kék litoszféralemezeit. E lemezek átlagos sebessége, éppúgy mint a termíkek felszállási sebessége néhány cm évente. Ezzel a sebességgel egy 3000 km sugarú kör bejárásához több százmillió év szükséges. A konvekciónban résztvevő anyagok tehát csak 20–30-szor fordulhatnak körül a kérégen a Föld egész élettörténete során.

\(^7\)A Föld forgása és a nagy méretek ellenére a középy áramlásában a Coriolis-hatás nem lényeges, mert a sebesség igen kicsi.
6. fejezet

A forgatás és rétegzés együttes hatása sekély folyadéakra

Forgatott rétegzett folyadékokban két karakterisztikus frekvencia persenget egymással: az N Brunt-Väisälä-frekvencia (vagy kéttréggő közepes megfelelője, a $\sqrt{g'/H}$ mennyiség) és az adott szélességi körre jellemző f Coriolis-paraméter. Mivel természetes közegenkben N típusú értéke $10^{-2} - 10^{-3}$ s$^{-1}$, a közepes szélességeken pedig az f_0 helyi Coriolis-paraméter 10^{-4} s$^{-1}$ körüli, a két frekvencia hányadosa, az

$$Fn \equiv \frac{N}{f_0}$$

frekvenciaarány 10 és 100 közötti. A rétegzettség önmagában tehát sokkal gyorsabb mozgásokat hoz létre, mint a forgás.

Mivel a rétegzettség hatása főleg a függőleges irányú mozgáshoz kapcsolódik, a forgatásé pedig a vízszintes sűrlőihez, célzerű a frekvencia-aránynak a H/L méretarány alatt vett szorzatát, ill. e szám négyzetét, a

$$Bu \equiv \left(\frac{NH}{f_0 L}\right)^2$$

Burger-számot használjuk. Ennek kis értéke forgás-dominált, nagy értéke pedig rétegzettség-dominált áramlásra utal. A sekély folyadék tulajdonság szerint $H \ll L$, s a Földön két nagyságrend a típusos különbség. A Burger-szám típusos értéke tehát a Földön egységes, s ez azt jelenti, hogy a forgás és a rétegzettség fontossága összefoglalható (ez nem feltétlenül jellemző más bolygón léggörire). A Burger-szám maga nem tartalmazza az áramlásra jellemző sebességet, de előáll két ilyen mennyiség, a Ro Rossby-szám és az Fr^2 bőségi Froude-szám áranyának négyzetévé váltja, $Bu = Ro^2 / Fr^2$. Egységes Burger-szám mellett a Rossby-szám és a bőségi Froude-szám azonos nagyságrendűek.

Ha a folyadékot állandó sűrűségű rétegekre bontottuk képeljük el, mint a 6.1 ábrán, akkor mindegyik réteg sekély homogén folyadékon kívül, melyen elhanyagolható viszkozitás esetén különböző állásban vannak, igaz, hogy a potenciális ötvözetesség megmaradása, vízszintes aljzatot és csak lépés a hosszú változásokat tekintve, a potenciális ötvözetességhez az f Coriolis-paraméteren kívül két jélről adódik: a szakaszos hidrodinamikai ötvözés és a bőségi elválászó felület változásából következő megnyúlás ötvözetesség. E két ötvözetességjárulék aránya éppen a Burger-szám. Annak egységes értéke azt is jelenti, hogy környezeti áramlásainkban a vízszintes sűrlő áramlásból adódó ötvözetesség összeharagvó a feláramlásokkal kapcsolatos ötvözetességgel.

A Burger-szám és az áramlás vízszintes L kiterjedése segítségével definiálható egy jellegzetes vízszintes sűrlő méret, az

$$R' \equiv L \sqrt{Bu} = \frac{NH}{f_0 L} \sim \frac{g' H}{f_0 L}$$

145
belső Rossby-sugár. A belső jelző arra utal, hogy ez a távolság a rétegzettesség következtében jelenlevő belső elválasztó felületnek mozgásával kapcsolatos. Mivel a belső mozgásokat a rétegek közötti sűrűségkülönbség szabályozza, melyi mindig lényegesen kisebb az átlagos sűrűségnél, a belső Rossby-sugár mindig kisebb a külsőnél. A belső Rossby-sugár az óceánban 50 km, a légkörben 1000 km nagyságrendűnek adódik. A belső Rossby-sugár ugyanakkor jóval nagyobb a H folyadékmélységénél, hiszen $R_e = H \cdot F_n$. Végül soron tehát az F_n paraméter nagy értéke miatt jogos a sekélyfolyadék közvetítés használata rétegzett közégekben is.

A belső Rossby-sugár minden olyan jelenségre jellemző vízszintes méret, mely a belső, vagy barok linen mozgásokkal kapcsolatos az f_0-től.

Ezen a távolságskáladon külső Rossby-sugár hallámosság változások nem is gerjeszthetőnek, s ezért a külső felszín gyakorlatilag vízszintesnek tekinthető.

A szabad felszíni Poincári- (tehetetlenségi-gravitációs) hallámok (l. 2. fejezet) analogiaként kialakuló belső Poincári-hallámok (6.2 ábra) frekvenciája nagyobb a Coriolis-paraméterénél és jellegzetes hallámossága éppen R_e. Folytonos rétegzettesség közégen ezek a hallámok a vízszintesszel θ szögét bezárva is haladhatnak, s ekkor megfigyelhető, hogy a pillanatnyi sebességvektor a haladási iránygal szemben haladva anticiklonálisan fordul el (6.4 ábra). A meredek pártvonalak mentén fűző belső Kelvin-hallámok a termoklin zóna jelentős mozgásával járnak, a nem forgatott rendszerekbeli belső hallám terjedési sebességével haladnak, de a partra merőlegesen lecsengenek a belső Rossby-sugárnyi távolságon (6.3 ábra).

A gyors forgás rétegzett folyadékban is időfüggőleges, stacionárius áramlás kialakulására vezet. Ennek a geostrofikus áramlásnak új vonása, hogy képes a gravitációs egyensúlytól eltérő, tehát nem függőleges rétegzettességet is fenntartani. A sűrűségfelületek döntőttsége esetén a felület két oldalán ráadásul eltérő nagyságú geostrofikus sebességek alakulnak ki, a felület mentén a sebességek tehát ugrása van (6.5 ábra). Folytonos rétegzettesség esetén ez azt jelenti, hogy végés vízszintes sűrűséggradienshez függőleges sebességnyírás tartozik. Mivel a sűrűségkülönbséget rendszerint hőmérsékletkülönbség húzza létre, az ilyen áramlást termikus áramlásnak, a légkörben termikus színke nevezzük. Az utóbbi tipikusan a sarkokhoz közeledve csökkenő hőmérsékletek miatt alakul ki. A termikus áramlás a magassággal erősődik (l. 6.5 és 6.16 ábrák), s maximális sebessége az óceánban néhány m/s, a légkörben 10 m/s. Lokális belső felszíni kidudorodások és behozódások ciklonális és anticiklonális áramlásokra vezetnek, a felső és alsó réteg sebességeinek viszonya azonban a külső és a belső felületek alakjának viszonyától függ (l. 6.6 és 6.17 ábrák).

Frontronl rétegzett közégen is akkor beszélünk, ha a két különböző sűrűségi közeget elválasztó felület kifut az átjáratra vagy a külső felszínre. A geostrofikus egyensúly egyik megdöbbentő következménye, hogy a frontoknknak ezzel az állapothán nem kell mozogniuk. Előttük és mögöttük, ill. az elválasztó felület felett és alatt azonban jelentősen különbözik a frontvonalall párhuzamos sebesség (6.7 ábra) a két közégen. A sebességugrast alapvetően az elválasztó felület γ döllészöge szabja meg. Az elválasztó felület alakját leírhatja egy, a rétegvastagsághoz eszponenciálisan tartó függvény, melynek lecsecéj állandója éppen a belső Rossby-sugár (6.12 ábra). A döllészöge nagysága ezért jó közelítéssel $R_e = \left| f_0 \right| / N = 1 / F_n$. Légkori frontokra ez 10^{-2} körül érték, a tapasztalattal jó egyezésben. A valóságos légkori frontok a geostrofikus állapotot valamelyhez eltérnek, mozognak.

A frontvonal mentén össze-, és feláramlás figyelhető meg (6.8, 6.9 ábra). A frontvonalall párhuzamos sebességiugrás, és a feláramlás miatt mind a hőeg, mind a melegfront mentén lokális nyomásminimum (6.10 ábra) figyelhető meg, a barométer eset, ha frontok közlekednek. A front áthaladását a paraméterek, pl. a széleirány hirtelen változása jelzi (6.11 ábra).

A geostrofikus egyensúlyi állapot kialakulása a belső Rossby-sugár újabb jelentését adja. Ha kezdhetnem mindkét közeg nyugszik, de az egyik csak egy félegyenenszeny tartománya terjed ki állandó vastagsággal ($6.13a$ ábra), akkor a geostrofikus egyensúlyi kialakulásáig az elválasztó felület sima, eszponenciális függvényel leírható alakúvá válik, a frontvonalall párhuzamosan sebességkülönbség jön létre, s a frontvonal maga éppen R_e-nyi távolságra mozdul el ($6.13b$ ábra). Ez megfigyelhető forgódás laborműtermi kísérletekben (6.14 ábra). A meredek tengerparttal párhuzamosan fújó
szelek feláramlást keltenek (13.1 ábra), mely belső frontok kialakulására vezet (13.2 ábra).

A geosztfokus egenségeitől enyhén eltérő krázsigeosztrokus mozgásokat egy napnál jóval hosszabb periódusú lassú dinamika jellemzi. A lokális belső felszínű kidudorodások alatti anticiklonális áramlás a folyadékot a keleti oldalon a kisebb Coriolis-paraméter irányába sodorja. A potenciális örvényesség csak úgy maradhat álládból, ha az alsó rétegvastagság csökken, a felső nő. Mindkét hatás arra vezet, hogy a keleti oldalon leáramlás, a nyugati feláramlás történik, azaz a deformáció nyugatra tolódik (6.18a ábra). Hallálanlak belső felszínű változás esetén is ugyanez a potenciális örvényesség megmaradásának következménye. A kialakuló hullám a belső (baroklin) Rossby-hullám (6.18b, 13.3 ábra), melynek jellegzetes hallámszúa a belső Rossby-sugár. A domborzati akadályok miatt felfelé haladó Rossby-hullámok alapvetően hatnak a magas légköröki mozgásokra is (13.4 ábra).

És a mechanizmus jelentős szerepet játszik a Golf-áramlat gyárainak lelassadásában és a légkőri ciclonok kialakulásában. A mérsekeltői légkőri ciclonok leggyakrabban a sarki hideg levegőt a közepes szélességek melegebb légkőmegeitől elválasztó poláris front mentén alakulnak ki (6.21 ábra). Irodáinként egesz ciklon-vonulatok is megfigyelhetők, melyek a baroklin hullámok jellegzetes alakját mutatják (6.22 ábra). Túl hosszú vonulatokra azonban nem számíthatunk, hiszen a belső Rossby-sugar csak néhánykor fér rá a közepes szélességi körökre. Az egyén felett légyérdegekben a ciklonok áramlás képe a baroklin instabilitás következtében nem azonos (13.6 ábra). A baroklin instabilitás kísérletileg is jól vizsgálható a középen húztott, a szélen ΔT értékkel melegebb fútott hengergyűrűben levő Ω szélességegel forgatott folyadékban (6.24 ábra). A legfontosabb paraméterek a ΔT/Ω tel árnyos termikus Rossby-szám és az Ω² tel árnyos Taylor-szám. Az instabilitás elég gyors forgatás mellett mindig fellép (6.25 ábra, s a megfigyelt tendenciák összhangban vannak a vízszintesen korláttalan kiterjedésű közége kapott kvantitatív eredményekkel is). A kialakuló áramlás kép (6.26 ábra) erős hasonlóságot mutat a nagyskalájú környezeti áramlásokban megfigyelhetőké. Mindez mutatja, hogy a baroklin instabilitás az alapvető oka időjárássunk változékonyságának, s egyben az óceáni áramlások dinamikájára is jelentős hatással van.

6.1 A forgatott kététegű sekély folyadék egyenletei

Celunk a sekély, rétegzett folyadék áramlásának leírása a forgó Földön. Nagyskalájú áramlásokat vizsgálva, a viszkozitást elhanyagoljuk. Először a közöge két élesen különböző sűrűségű rétegből állnak tekintjük, közéttük Δρ sűrűségkülönbséggel. A tapasztalathoz igazodva felteszünk, hogy a relatív sűrűségkülönbség kicsi, Δρ/ρ₀ ≪ 1, vagyis a redukált gravitációs gyorsulás sokkal kisebb a teljesnek: g' ≡ Δρ/ρ₀ ≪ g.

A sekélység következtében mindkét rétegben alkalmazhatjuk a hidrosztatikus közeltést. A nyomáscsökkentés ugyanolyan alakú (l. 5.10 fejezet), mint a nem forgatott sekély folyadékból,
hiszen azt a hidrostatiká határozza meg. A vízszintes sebességkomponensekre vonatkozó Euler-egyenletekben új tagként a Coriolis-gyorsulás jelenik meg, s ezért az 5.10 fejezet jelöléseit használva (l. 6.1 ábra).

$$\frac{d\mathbf{u}_1}{dt} = -f \mathbf{n} \times \mathbf{u}_1 - g \text{grad} \eta, \quad \frac{d\mathbf{u}_2}{dt} = -f \mathbf{n} \times \mathbf{u}_2 - g' \text{grad} \chi.$$ (6.1)

Mindkét egyenlet a forgó Föld felszínén érvényes, s a z tengely a lokális függőleges n irányt jelöli ki. A forgás helyi erősségét az $f = f_0 + \beta y$ Coriolis-paraméter méri (l. 3.3 fejezet). A g', ill. g' gravitációs gyorsulások magukban foglalják a centrifugális járulékokat is. A d/dt derivált a két-dimenziós advéktív gyorsulást tartalmazza, hiszen az egyes sebesség rötegekben a sebesség feltevés szerint független a magasságtól. A kontinuitást a folyadékoszlopop téréfogatának megmaradása jelenti, ezért mindkét közeg pillanatnyi $h_1 = \eta - \chi + H1$ és $h_2 = \chi + H2$ vastagságára fennáll

$$\frac{dh_i}{dt} = -h_i \text{div} \mathbf{u}_i,$$ (6.2)
i = 1, 2.

6.1 ábra: A Föld felszínén elhelyezkedő kéttrétegű sebességi folyadék, s a fejezetben használt jelöléseik. A koordinátarendszer z tengelye a lokális függőleges irányba mutat. Az x tengely a szélességi körökkel párhuzamos. Az északi feltelen az x koordinátára értéke keletre, az y-é északra növekszik (a délnél fordítva). A folyadék forgatási erősségét a helyi Coriolis-paraméter $f(y) = f_0 + \beta y$ szabja meg, mely enyhén függ az y koordinátától. A külső felszín nyugalmi szintezhez visszanyitott $\eta(x,y,t)$ alakján kívül, fontos a ρ_0 sűrűség 1-es közeget a $\rho_0 + \Delta \rho$ sűrűségű 2-es közegtől elválasztó belső felület $\chi(x,y,t)$ alakja. Az egyszerűség kedvéért az aljzatot vízszintesnek tekintjük ($z = 0$ szint). Végül őszre, hogy a felső réteg szempontjából a belső felület játssza a pillanatnyi alsó dombozat (a 21 fejezetbeli $d(x,y)$) szerepét. A folyadék átlagos H mélysége sokkal kisebb L vízszintes kiterjedésénél.

Mindkét rétegben azonos U nagyságrendű sebességeket feltételezve, a (1.30) és az $\eta \to (|f_0|LU/g)\eta$ dimenziótlanítással a két kontinuált egyenlet nem változik, a dinamikai egyenletekben a keresztsorozat és a gradη tag előtt a $Ro = U/(|f_0|L)$ Rossby-szám jelenik meg, a H egységekben mért belső felszínü ingadozás grady gradiens előtt pedig az $Fr' = U/\sqrt{g' H}$ belső Froude-szám. Az alsó közeg dimenziótlan egyenlete az f_0 síkon például:

$$\frac{d\mathbf{u}_2}{dt} = \frac{1}{Ro} (\mathbf{n} \times \mathbf{u}_2 - \text{grad} \eta) - \frac{1}{Fr'^2} \text{grad} \chi,$$ (6.3)
(az alsó előjel a déli feltekére vonatkozik). A problémában tehát mind a forgatásra, mind a rétegzettségre jellemző dimenziótlan szám jelen van.

Mivel a külső felszínén és a rétegek között sem tételeznünk fel súrlódást, a két réteg egymástól függetlennek tekinthető, s mindkettőben fennáll a potenciális örvényesség megmaradása (l. 2.3 fejezet). Ezért az $i = 1, 2$ réteg ζ_i függőleges örvényesség-komponense és h_i pillanatnyi vastagsága segítségével kézzett

$$q_i = \frac{\zeta_i + f}{h_i} H_i, \quad i = 1, 2$$ \hspace{1cm} (6.4)

potenciális örvényesség az i-edik közégen mozgásállandó.

A redukált sekélyfolyadék-modell azt az esetet írja le, melyben valamelyik réteg sokkal vastagabb a másiknál, s a vastag rétegben áll a folyadék. A mozgó réteg változóiban, a forgatótt sekélyfolyadék-modell egyenletei

$$\frac{du}{dt} = -f n \times u - g' \text{grad} h,$$ \hspace{1cm} (6.5)

$$\frac{dh}{dt} = -h \text{div} u$$ \hspace{1cm} (6.6)

függetlenül attól, hogy melyik színről van szó. A nyugalmi rétegvastagság $h_0 = \min(H_1, H_2)$. Annak ellenére, hogy a két rétegű közlelés sokszor talál szoros a egyszerűsítés, mégis első tájékozódást követtel jól használható. A (6.5) egyenlet ugyanolyan struktúrájú, mint a (2.7), s ez mutatja, hogy minden jelenség, melyet forgatótt sekély folyadékban megismertünk, előfordul rétegzettség esetén is, csak rövidebb időn kívül jelentik meg, melyet a g' redukált gravitációs gyorsulás határoz meg. Mivel a későbbiek szempontjából fontos mindkét közeg sebességfelület használjuk.

6.2 A folytonos rétegzettségű forgatótt sekély folyadék egyenletei

Folytonos rétegzettség esetén a Boussinesq-közlelést (l. 5.3 fejezet) használjuk a forgó Föld felszínén felirő Euler-egyenletben. A sekélyfolyadékban alapján elhanyagolható függőleges gyorsulás a nyomásszelvény z-függésére hídrrozatatlali viszonyokat biztosít. A geometriai elrendezés azonos a 6.1 ábrán látttal, de most a sebességtér folytonos magasságfüggésű. A külső felszín η alakján kívül a belső elválasztó felület, a mozgások külön nem követjük, ezek az állandó sűrűségű felületeknek felelnek meg. A rétegek vízszintes nyugalmi elrendezését és az ezzel kapcsolatos Brunt–Väisälä-frekvencia jelenlétéi egyedülre nem tekintek fel, mert forgatott rendszerben függőlegesből eltérő rétegzettség is kialakulhat, sőt stacionárius is maradhat, ha hozzá megfelelő áramlat tartozik. Az ilyen stacionárius állapot stabilizálása azonban nem garantált.

A H vastagságú folyadékban a mozgás egyenletek a két vízszintes sebességkomponens időfejlődésére ekkor

$$\frac{du}{dt} = -f n \times u - \frac{1}{\eta_0} \text{grad} p''.$$ \hspace{1cm} (6.7)

Itt p'' a $p_0(z) = p_0 + \phi_0(H - z)$ nyomástól való eltérést (l. (5.13)), a grad az (x, y) változók szerinti gradienst jelenti. d/dt a teljes időderivált: $\partial/\partial t + u\partial/\partial x + v\partial/\partial y + w\partial/\partial z$, hiszen a vízszintes sebesség most függ a magasságtól is. A harmadik komponens egyenletéből a sekélység
következtében $dw/dt \approx 0$, tehát hidrosztatikai viszonyok érvényesülnek:

$$\frac{\partial p''}{\partial z} = -g'' g.$$ \hfill (6.8)

Fennáll továbbá a Boussinesq-közeltésből (1. 5.3 fejezet) következő

$$\text{div } \mathbf{v} = 0$$ \hfill (6.9)

divergencia-mentességi feltétel, és a

$$\frac{dq''}{dt} = 0$$ \hfill (6.10)

eyenlet is, ahol q'' a ϱ_0 sűrűségtől való (általános esetben időfüggő) eltérés.

A (6.8) hidrosztatikai egyenlet integrálásával a nyomás kifejezhető a sűrűségváltozásával és a szabad felszíni η alakulával,

$$p = p_0 + \varrho_0 \eta(x, y, t) + H - z + g \int_0^t \eta'' H dz' \equiv p_0(z) + p'',$$ \hfill (6.11)
ahol a külső felszíni p_0 nyomás feltevés szerint állandó. A q'' sűrűségváltozás általában függ az (x, y) vízszintes koordinátáktól: a sűrűségváltozás (6.7) szerint vízszintes irányú gyorsulást okoz, hiszen a gravitáció erő az állandó sűrűséggel felületek vízszintes síkba forgatására törekszik.

*Függőleges rétegzetség esetén adott az időfüggetlen egyensúlyi $\varrho(z)$ sűrűségeloszlás. Ilyenkor a η'' sűrűségváltozás helyett a $\varrho(z)$ sűrűségeloszlástól való eltérést megadó η dinamikai sűrűséget használjuk (l. (5.15)). Az egyensúlyi $\varrho(z)$ nyomástól való eltérést az (5.17) p' dinamikai nyomás adja. A (6.10) sűrűségegyenlet éppúgy, mint a nem forgatott esetben (5.4 fejezet)

$$\frac{\partial \eta}{\partial t} + (\mathbf{v} \text{grad}) \varrho' = -w \frac{dg'}{dz} \equiv w \varrho_0 N^2(z),$$ \hfill (6.12)
ahol N a Brunt–Väisälä-frekvencia és (6.9) is érvényben marad. A (6.7), (6.8) egyenletekben ekkor a kétvesszős helyett az egyvesszős dinamikai mennyiségek jelennek meg.

6.3 Hullámok forgatott kétrétegű sekély folyadékban

A nyugalmi állapotból történő kis eltéréseket a (6.1) Euler-egyenletek

$$\frac{\partial \mathbf{u}_1}{\partial t} = -f \mathbf{n} \times \mathbf{u}_1 - g \text{grad}\eta, \quad \frac{\partial \mathbf{u}_2}{\partial t} = -f \mathbf{n} \times \mathbf{u}_2 - g \text{grad}\eta - g' \text{grad}\chi$$ \hfill (6.13)
lineárisított változatai adják. A (6.2) kontinuitási egyenletek lineárisított alakja pedig

$$\frac{\partial (\eta - \chi)}{\partial t} = -H_1 \text{div}\mathbf{u}_1, \quad \frac{\partial \chi}{\partial t} = -H_2 \text{div}\mathbf{u}_2,$$ \hfill (6.14)
hiszen a felső réteg vastagságának ingadozása $\eta - \chi$, az alsóé pedig χ.

A nem forgatott rendszerben szerzett tapasztalatunk alapján (l. 5.10 fejezet) azt várjuk, hogy a jelentős χ belső felszíni változásokkal járó baroklin mozgások esetén a külső felszín η változása

150
csekély szerepet játszik csak. Ezért az \(\eta \) mennyiségét először elhanyagoljuk \(\chi \) mellett az első kontinuitási egyenletben, azaz a merev lap közelítést alkalmazzuk. Emek előnye, hogy régtől zárt egyenletet kapunk a két közeg közötti \(\mathbf{u} \equiv \mathbf{u}_2 - \mathbf{u}_1 \) relatív sebességére. Az Euler-egyenletek kivenásával ugyanis

\[
\frac{\partial \mathbf{u}}{\partial t} = -f \mathbf{n} \times \mathbf{u} - g' \text{grad} \chi. \tag{6.15}
\]

A különbségi mozgást tehát a belső felszín alakváltozása vezérelt forgatott esetben is. A kontinuítási egyenletek összegéből ugyanakkor az következik, hogy az

\[
\tilde{\mathbf{u}} \equiv \frac{H_1 \mathbf{u}_1 + H_2 \mathbf{u}_2}{H}
\]

mélységi átlagsebesség síkbeli divergenciája nulla. Az időben változó felszínek miatt a hullámok külön-külön nem lehetnek divergenciamentesek, ezért hullámegoldás csak úgy létezhet, hogy a mélységi átlagsebesség térben állandó. Mivel mindegyik sebesség időben oszcillál, az állandó csak zérus lehet: \(H_1 \mathbf{u}_1 = -H_2 \mathbf{u}_2 \). Az így előálló \textit{baroklin} hullámokban a két rétegben tehát \textit{ellenkező} előjelű a sebesség. A kontinuítási egyenletek súlyozott különbsége (\(\eta = 0 \) mellett) a relatív sebesség újabb kapcsolatát adja a belső felszíni alakkal:

\[
\frac{\partial \chi}{\partial t} = - \left(\frac{1}{H_1} + \frac{1}{H_2} \right)^{-1} \text{div} \mathbf{u}. \tag{6.17}
\]

A (6.15) és (6.17) zárt egyenletrendszer teljes mértékben analóg a (2.7) sekélyfolyadék-egyenletekkel, csak benne a \(g' \) redukált gyorsulás és a rétegek mélységének harmonikus középe jelenik meg.

A teljes rétegvasagság helyett a \(\text{div} \mathbf{u} \) tag együtthatója most \(H_1 H_2 / H \). A homogén esetben megjelent \(R = \sqrt{g H / |f_0|} \) (külső) Rossby-sugár analógja ezért az

\[
R' \equiv \sqrt{\frac{g H_1 H_2}{|f_0|}}
\]

\textit{belső Rossby-sugár}. A \(L \) síkbeli távolsághoz viszonyított \(R' / L \) belső Rossby-sugár úgy is írható, mint a Rossby-szám és az \(F' = U / \sqrt{g H} \) belső Froude-szám hányadosa szorozva egy, a rétegvasagságok arányától függő kifejezéssel. A belső Rossby-sugár tehát becsülhető az

\[
R' \approx L \frac{R_0}{F'}
\]

aránnyal. Ez mutatja, hogy a belső Rossby-sugár az a távolság, ahol a forgásból és a rétegezett ségből adódó hatások összemérhető szerepet játszanak. Érdemes felírni a belső Rossby-sugár egy másik alakját is. Felhasználva, hogy (6.18) számlálójában a nem forgatott kétrétegű közeg belső hullámának (5.66) sebessége áll,

\[
R' \equiv \frac{c_1}{|f_0|}, \tag{6.20}
\]

teljes analógiában azzal, hogy a külső Rossby-sugár a szabad felszínű hullámok \(c_0 \) terjedési sebességének és a Coriolis-paraméternek a hányadosa.

Az ócánbeli belső Rossby-sugár jóval kisebb a külsőnél. Tipikus \(g' = 0,03 \text{ m/s}^2, H_1 = 400 \text{ m}, H_2 = 3600 \text{ m} \) értékekkel és \(f_0 = 10^{-4} \text{s} \) Coriolis-paraméterrel számolva azt kapjuk, hogy \(R' \approx 30 \text{ km} \) (\(c_1 \approx 3 \text{ m/s} \)). A légköri különbség nem ilyen nagy: a légköri két egyforma vastag rétegre bontva (\(H_1 = H_2 = 5000 \text{ m} \)), \(g' = 1 \text{ m/s}^2 \)-tel \(R' \approx 500 \text{ km} \) adódik.
Amennyiben az egyik réteg jóval vastagabb, mint a másik, akkor
\[R' = \frac{\sqrt{g' h_0}}{|f_0|}, \]
(6.21)

ahol \(h_0 = \min(H_1, H_2) \) a keskenyebb réteg vastagsága. Ez nem más mint a (6.5) reduktált sebesség-folyadék-modell belső Rossby-sugara.

A homogén közegek Poincaré-hullámai (2.8 fejezet) mintájára a kétrétegű közegben kialakulnak a tehetetlenségi-gravitációs hullámok belső, vagy baroklin változata is (6.2 ábra). A belső tehetetlenségi-gravitációs hullámokat a két közeget elválasztó felület bármién kisképek perturbációnja, pl. a termoklin zónabeli enyhe fel-, vagy leáramlás is kiválthatja. Diszperziós relációjuk a (2.59) összefüggéssel analóg módon
\[\omega_0 = \pm (f_0^2 + c_1^2 k^2)^{1/2} = \pm f_0 \left(1 + \left(R' k\right)^2\right)^{1/2}, \]
(6.22)

ahol \(k = (k_1^2 + k_2^2)^{1/2} \) a hullámszámvektor hossza. A tehetetlenségi mozgás is jelen van ezekben a hullámokban, melyre az \(f_0 \) minimális frekvencia megfelelése utal. A \(c_1 \) sebességű belső hullámoktól való eltérés az \(R' \) belső Rossby-sugár háromszoros vagy annál nagyobb hullámmozgásra válík jelentőssé, a rövid hullámok esetén a Coriolis-hatás elhanyagolható.

6.2 ábra: Belső Poincaré- (tehetetlenségi-gravitációs) hullám két rétegű közegben. A külső felvesszín változásánál jóval erősebb a belső felszínű. A hullám frekvenciája a forgási szögezsebességnél (az \(f_0 \) Coriolis-paraméterénél) nem lehet kisebb, ezért gyorsabb a nem forgatott rendszerek belső hullámait. A mozgás a tehetetlenségi körmozgás és a \(g' \) reduktált gravitációs térben kialakuló felszínű hullám kombinációja.

Mereked, egyenes partvonalak mentén kialakulnak belső, vagy baroklin Kelvin-hullámok is. A lokális szeke által látott helyi fél- vagy leáramlások mozgathatják meg a termoklin zóna határát, s ez gerjeszti a part menti baroklin hullámokat. A belső Kelvin-hullámok a nem forgatott rendszer belső hullámainak \(c_1 \) sebességével haladnak a partvonal mentén (6.3 ábra), de arra merőlegesen, az \(y \) irányban az \(\exp \left(-y/R'\right) \) összefüggés szerint csendenek le. Partra merőleges kiterjesésük tehát néhány belső Rossby-sugárnyi.

Megemlítjük, hogy az \(\eta \) felszínű alakváltozás megtartása (a merev lap közeltéss elvétése) esetén a nem forgatott esetben hasonlóan kiderül, hogy a baroklin mozgás során \(\eta = -\chi g'/g \). A felszínű alakváltozás tehát csekély és ellemező előjelű a belsőhöz képest. Ennek megfelelően a (6.18) belső Rossby-sugárhöz is csak \(g'/g \ll 1 \) rendű korrekciónk szükséges. A (6.18) alak tehát használható felszínű mozgás jelenléte esetén is. Létezik ugyanakkor olyan megoldás is, melyben a felszínű alakváltozás jelentős, a belső ingadozás azzal összehangolt és azonos előjelű. A (??) egyenletből látszik, hogy \(g' \) kicsinyűse, miatt ekkor \(u_2 \approx u_1 \), tehát a két réteg közé azonosan mozog, s \(g'/g \) nagyságú korrekciónk erejéig visszakapjuk a homogén forgatott közegben megjelenő hullámokat (Poincaré- vagy Kelvin-hullámok). Ezeket a rétegkettő közeg barotróp hullámainak

152
6.3 ábra: Belső Kelvin-hullám kétrétegű közegben. A hosszú szaggatott vonalak a felületek alakját jelzik fél periódussal később. A külső felszín változásánál itt is jóval erősebb a belső felszíné. A hullám az x tengely mentén halad a belső hullámok c_1 sebességével, az y tengely mentén pedig lecseng az R' belső Rossby-sugárnak megfelelő távolságon.

nevezzük. Karakterisztikus méretük a $R = \sqrt{gH/|f_0|}$ külső Rossby-sugár, mely, mint láttuk a legkörübb és az öccsökben 3000 ill. 1000 km nagyságrendű. Ennek fényében értethető, hogy amennyiben a külső Rossby-sugárnál rövidebb skálájú jelenségeket vizsgálnunk, $k_z R \gg 1$, akkor jogos a külső felszíni alakváltozások elhanyagolása, vagyis a merev lap közelítés használata.

6.4 Hullámok állandó függőleges rétegzettségű forgatott, sekély folyadékban

A 6.2 fejezetben bemutatott mozgásgegyenletek állandó Brunt–Väisälä-frekvenciával jellemzett rétegzettség esetén kialakul nyugalmi állapot körül linearizált alakja

$$\frac{\partial u}{\partial t} = f v - \frac{1}{\rho_0} \frac{\partial p'}{\partial x}, \quad \frac{\partial v}{\partial t} = -f u - \frac{1}{\rho_0} \frac{\partial p'}{\partial y}, \quad (6.23)$$

ahol p' a $\bar{p}(z)$ egyensúlyi nyomástól való eltérés. A harmadik sebességkomponensből a sekélyseg következtében:

$$\frac{\partial p'}{\partial z} = -g \dot{\theta}.$$

A (6.12) sürűségegyenlet linearizált változata

$$\frac{\partial \dot{\theta}}{\partial t} = -w \frac{\partial \rho_0}{\partial \theta} N^2. \quad (6.25)$$

A baroklin mozgások megtalálásához alkalmazzuk most is a merev lap közelítést, azaz tegyük fel, hogy a felszín nem meztalhat el, tehát a függőleges sebesség a $z = H$ felső szinten éppúgy eltűnik, mint a közeg alján, $z = 0$-ra. Ekkor a függőleges sebesség és minden más változó magasságfüggése is kifejezhető egy $\exp(-ik_z z)$ tényezővel, ahol a hullámszám függőleges k_z komponense a

$$k_z = n \frac{\pi}{H},$$

$n = 1, 2, ...$ értékeket veheti csak fel, vagyis a λ_z függőleges irányban kialakuló hullámkossz fede egész számszor fél rá a teljes H magasságra: $\lambda_z/2 = H/n$. A nem forgatott folytonos rétegzettségű közeg dinamikájának leírásakor használt normálmodusok bevezetésének mintájára (5.9
fejezet) alkalmazzuk az

\[(u, v, w, p', \theta') (x, y, z, t) \rightarrow (u, v, w, p', \theta') (x, y, t) \cdot e^{-iksz} \quad (6.27)\]

helyettesítést. A jobb oldalon álló, csak sikkeli koordinatáktól függő términnyiségek a forgatott rétegzett folyadék normálmodusai. Időfüggő egyéb közteseség lehet. A normálmodusok függnak a \(k_z\)-t megadó \(n\) indextől, de az egyszerűség kedvéért ezt egyelőre nem jelöljük.

A (6.25) sűrűségegyenlet z szerinti deriváltjából a (6.24) hidrosztatikai egyenlet és (6.27) felhasználásával:

\[\frac{\partial^2 \theta}{\partial t \partial z} = \frac{k_z}{g} \frac{\partial p'}{\partial t} = \frac{\rho_0 N^2}{g} \frac{\partial w}{\partial z}. \quad (6.28)\]

A divergenciamentességi egyenletből \(\partial w/\partial z\)-t kifejezve, \(k_z\) (6.26) lehetséges alakjainak felhasználásával kapjuk, hogy

\[\frac{\partial (p'/\theta \theta)}{\partial t} = -\frac{N^2 H^2}{g \pi^2 n^2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right). \quad (6.29)\]

A (6.23) Euler-egyenlettel ez azonos szerkezetű rendszert képez, mint a (2.52)-(2.54) lineárisított sekélyfolyadék egyenletek, amelyekbe a

\[p' \rightarrow g \theta \theta, \quad \frac{N^2 H^2}{g \pi^2 n^2} \rightarrow H \quad (6.30)\]

helyettesítéssel megy át. A

\[H_{e,n} \equiv \frac{N^2 H^2}{g \pi^2 n^2} \quad (6.31)\]

mennyiséget ezért ekvivalent mélységek nevezzük. Azt adja meg, hogy milyen mélységű homogén sekély folyadékban alakulnak ki ugyanazok a hullámjelenségek, mint \(H\) mélységű folytonosan rétegzett folyadékban. Már az első módus ekvivalens mélysége is meglepően csokly: \(\) óceánban 1 m-nél valamivel rövidebb, a légkörben pedig néhány száz m.

A nem forgatott rétegzett folyadék belső normálmodusainak 5.9 fejezetében meghatározott (1. (5.48)) sebességeivel az ekvivalens mélység a

\[c_n^2 = g H_{e,n} \quad (6.32)\]

célsorban áll. Az ekvivalens mélységek, ill. a terjedési sebességek egész spektruma miatt, a problémához a belső Rossby-sugarak sorozata tartozik:

\[R' = \frac{\sqrt{g H_{e,n}}}{|f_0|} = \frac{c_n}{|f_0|} = \frac{N H}{|f_0| \pi n}, \quad (6.33)\]

\(n = 1, 2, \ldots\) Nagyságrendi becslésekben a folytonos rétegzettégű közeg belső Rossby-sugarára az

\[R' \approx \frac{N H}{|f_0|} \quad (6.34)\]

értéket használjuk.

A légkörön \(N = 10^{-2} \) 1/s Brunt-Väisälä-frekvenciával és \(H = 10 \) km vastagsággal számolva közepes szélességeken \((f_0 = 10^{-4} \) 1/s \) azt kapjuk, hogy \(N H/|f_0| = 1000 \) km. A Brunt-Väisälä-frekvencia tipikus óceán \(N = 10^{-3} \) 1/s értékével a belső Rossby-sugár a folytonos rétegzettégű óceánban \((H = 4 \) km) 40 km. Mivel a rövidebb hullámok gyorsabban csillapodnak, az első normál módusok a legjelentősebbek. A megfigyelések szerint a hosszú idejű óceáni mozgások szempontjából első közelítésben legendő az \(n = 1\) és \(n = 2\) normál módus figyelembevétele.
Egy \(n + 1 \) rétegű közegeben \(n \) különböző belső hullám terjedési sebesség lehetséges, s ezért \(n \) különböző belső Rossby-sugár definiálható. Ha tehát a folytonos rétegzettgő közege első \(n \) normál modusával dolgozunk csak, az annak felel meg, hogy a közeget \(n + 1 \) rétegüként közelítsük.

A forgatott rétegzett rendszerekre jellemző két frekvencia jellegű mennyiséget a \(N \) Brunt–Váissálli-frekvencia és az \(f_0 \) Coriolis-paraméter között rendszerint nagyságrendi különbség áll fenn a Brunt–Váissálli-frekvencia javára: az

\[
Fn \equiv \frac{N}{f_0} \tag{6.35}
\]

frekvenciaszám vagy frekvencia arány nagy. Adataink alapján a légkörben \(Fn = 100 \), az óceánban \(Fn = 10 - 100 \). Ezzel

\[
R' \approx H \frac{F}{F_0} \tag{6.36}
\]

A belső Rossby-sugár, mely az áramlatok jellegzetes vízszintes mérete, sokkal nagyobb a teljes mélységénél. Végző soron tehát a nagy frekvenciának teszi jobbá a sekélyfolyadék közlődés használatait forgatott rétegzett közegeből.

Mivel a \(H/L \) méretarány is típusban \(10^{-2} \), nagysklájú környezeti áramlásokban a

\[
Bu \equiv \left(\frac{NH}{f_0 L} \right)^2 \approx \left(\frac{Ro}{F R_t} \right)^2 \approx \left(\frac{R'}{L} \right)^2 \tag{6.37}
\]

Az \(n \)-edik normál módonak megfelelő belső Poincaré-hullám diszperziós relációja folytonos rétegzettág esetén a homogén közegbeli összefüggés alapján

\[
\omega_0 = \pm \left(\frac{f_0^2}{a^2} + k^2 \right)^{1/2} = \pm \left(\frac{f_0^2}{a^2} + \frac{N^2 H^2}{\pi^2 a^2 k^2} \right)^{1/2} = \pm f_0 \left(1 + (R' k a)^2 \right)^{1/2}, \tag{6.38}
\]

ahol \(k = (k_x^2 + k_y^2)^{1/2} \) a hullámszámvektor hossza a vízszintes síkban. Figyelembe véve a függőleges hullámszámvektor \((6.26) \) lehetséges értékeit, a teljes diszperziós reláció úgy is írható, mint\(^1\)

\[
\omega_0 = \pm \left(\frac{f_0^2}{a^2} + N^2 \frac{k_x^2}{k_z^2} \right)^{1/2}. \tag{6.39}
\]

1 Olyan bolgök légkörében, ahol ez nem áll fenn, a környezeti áramlások más jellegük mint a Földön.
2 Mély rétegzett folyadékban, melyben a hidrostatikus közlődés nem használható, a diszperziós reláció
3 A 1.9 fejezetben látott tehetséletességi hullamok és az 5.5 fejezet belső hullám diszperziós relációinak
4 A (6.39) alak a sekély folyadéknak megfelelő \(k_x \gg k, k_y \) esetben adódik, amikoris
5 Mint a 1.9 fejezetben látott tehetséletességi hullamok és az 5.5 fejezet belső hullám diszperziós relációinak
6 A (6.39) alak a sekély folyadéknak megfelelő \(k_x \gg k, k_y \) esetben adódik, amikoris
Mivel a függőleges és a vízszintes hullámszám a H mélység ill. az L síkbeli kiterjedés reciprokával aránynak és $H \ll L$, a k_z függőleges hullámszámkomponens sokkal nagyobb, mint k_x, k_y, vagyis a teljes hullámszámvektor vízszintesszel bezárt szöge közel 90 fok. A hullámok tehát majd függőleges terjedési irányúak. Csoportsebességük merőleges a terjedési irányra, s előjelét a belső hullámakra érvényes összefüggések adják meg.

Érdekes megfigyelhető következménnyel jár a hullám elliptikus polarizációja. A tehetséges hullámokhoz (1. 2.8 fejezet) hasonlóan a két vízszintes sebességkomponens komplex amplitudójára a lineáriség egyenletekből azt kapjuk, hogy $\mathbf{v}_0 = \mathbf{v}_0 \omega_0 / \omega_0$, a két sebességkomponens tehát negyed fázisnyi különbözetben van, de amplitudójuk most nem azonos. Adott helyen a sebességvektor anticklonális forogó időben, hiszen a Coriolis erő az áramidsz lezárás az északi felől, a délnél balra térítő. Ennek következtében (amint az 1.10 fejezetben is láttuk) a sebességvektorok elfordulása egy adott pillanatban törbelt is anticklonális, ha ω_0 / k_z fázissebességgel ellentétes irányban mozgunk a z tengely mentén (l. 1.16 ábra). A pillanatnyi sebességek térbeli elfordulása megfigyelhető mind a légkör, mind az óceáni mozgások belső tehetséges hullámokból eredő komponenseiben. A tapasztalat szerint a légkő hullámok csoportsebessége döntően felfelé mutat, tehát bennünk pozitív frekvencia esetén a k_z hullámszám negatív. Ilyenkor az anticklonális sebességelfordulás felfelé haladva látható (6.4 ábra). A tengeri hullámokban fordított a helyzet, ott az energiaszállítás főleg lefelé történik, ezért ott az anticklonális sebességelfordulás a mélyebb rétegek felé haladva figyelhető meg leggyakrabban (mint a 1.16 ábrán).

A belső Kelvin-hullámok folytonosan rétegzett közegben a c_n sebességek valamelyikével haladnak, és az n indexnek megfelelő R'_n belső Rossby-sugárral csengetne le. Itt is az első néhány módszerek van csak gyakorlati jelentősége. Az első normálmodus geometriája azonos a 6.3 ábrán látott, ha a belső elválasztó felületnek az éppen eltűnő vízszintes sebességű pontok összességét tekintjük.

Az η felszíni alak megtartása most is csakély változást jelent csak a baroklin hullámok tulajdonságainak. Létezik ugyanakkor barotróp hullám is, ahol a felszíni alakváltozás jelentős, s a két réteg közé azonosan mozog, hasonlóan az homogén közegéhez. Ezt a külső Rossby-sugár jellemzi. Érdemes ezért a Rossby-sugárak (6.33) rendszerét kiegészíteni a külső Rossby-sugárakkal. Ez formálisan az $n = 0$ indexhez tartozóan tekinthető, a felszíni hullámok c_0 sebességével (l. 2.46)

156
A fenti megfontolások egyértelművé teszik, hogy gyorsan forgatott rétegzett folyadékban kialakulnak Rossby-hullámok is, s azokat a Rossby-sugarak rendszere határozza meg. Mielőtt azonban ezen fontos hullámok tárgyalására rátérnénk, érdemes megismerkedni az igen gyors forgatás határesetével kapcsolatos geosztrofikus egyensúlyi jelenségekkel.

6.5 Geosztrofikus egyensúly kétrétegű sekély folyadékban

A (6.3) Euler-egyenletben fellépő hidrodinamikai gyorsulás Rossby-számssor kisebb jelenőségű, mint a Coriolis-gyorsulás. A gyors forgatás határesetében a hidrodinamikai gyorsulás eltűnik, s kialakul egy \(u_{g,1} \), \(u_{g,2} \) stacionárius áramlás, amelyben a felszíni alakok kompenzálják a Coriolis-hatást, azaz

\[
f_0 \mathbf{n} \times u_{g,1} = -g \, \text{grad} \eta, \tag{6.40}
\]

\[
f_0 \mathbf{n} \times u_{g,2} = -g \, \text{grad} \eta - \frac{g'}{f_0} \, \text{grad} \chi. \tag{6.41}
\]

A két egyenletet kívonva:

\[
f_0 \mathbf{n} \times (u_{g,2} - u_{g,1}) = -g' \, \text{grad} \chi. \tag{6.42}
\]

A geosztrofikus áramlást a felső közegben tehát a felszíni alak határozza meg, a két közeg közötti sebességkülönbséget pedig az elválasztott felület alakja. A (6.42) egyenletből az is leolvasható, hogy az elválasztott felület szintvonalaival párhuzamos a relatív sebesség. Komponensekben:

\[
v_{g,1} = \frac{g}{f_0} \frac{\partial \eta}{\partial x}, \quad u_{g,1} = -\frac{g}{f_0} \frac{\partial \eta}{\partial y}, \tag{6.43}
\]

és

\[
v_{g,2} = \frac{g}{f_0} \frac{\partial \eta}{\partial x} + \frac{g'}{f_0} \frac{\partial \chi}{\partial x}, \quad u_{g,2} = -\frac{g}{f_0} \frac{\partial \eta}{\partial y} - \frac{g'}{f_0} \frac{\partial \chi}{\partial y}. \tag{6.44}
\]

Az \(f_0 \) síkon zajló geosztrofikus áramlást mindkét közegben kétdimenziós, divergenciamentes. Létezik tehát egy \(\psi_1 \) és egy \(\psi_2 \) áramlási függvény, melyből a geosztrofikus sebességek a szokásos deriválási szabályal kaphatók. A fenti (6.43), (6.44) egyenletek alapján

\[
\psi_1 = \frac{g}{f_0} \eta, \quad \psi_2 = \frac{g}{f_0} \eta + \frac{g'}{f_0} \chi. \tag{6.45}
\]

Ebből ismét látszik, hogy a relatív sebességeket a belső \(\chi \) felületi alak határozza meg.

Konkrét példaként tekintésük azt az esetet, amikor az elválasztó felület az \(y \) irányban egyenletesen változik. Tegyük fel, hogy \(\gamma \) változó, azaz a \(\gamma \) dölésszög pozitív. Ez annak fele megpl., hogy az Északi-sark felé haladva az alsó hidegabb légréteg egyre vastagabb. A (6.43), (6.44) egyenletekből

\[
u_{g,2} - u_{g,1} = -\frac{g'}{f_0} \frac{\partial \eta}{\partial y}. \tag{6.46}
\]

Az ilyen döles tehát az északi felére a keletre irányuló áramlás sebességet befolyásolja. A felső rétegben az áramlás \emph{erősebb}, mint alul (6.5 ábra), \emph{függetlenül} attól, milyen a külső felszíni alak.

A következő példában megvizsgáljuk, hogyan befolyásolja az áramlást a felszín és a belső elválasztó felület viszonya. Tegyük fel, hogy a felszínen kihidrorolás figyelhető meg, \(\eta \) lokális maximummal rendelkezik, mely anticklónális áramlást hoz létre. Az egyszerűség kedvéért tegyük fel azt is, hogy \(\chi \) arányos \(\eta \)-val. Ha \(\chi \) és \(\eta \) azonos nagyságrendűek, akkor (6.44)-ben a \(g' \)-vel arányos tagok csekély szerepet játszanak, s ezért az áramlás gyakorlatilag azonos mindkét rétegben, mely egy homogén (barotóp) anticklónnak felel meg (6.6a ábra). Ha az elválasztó
6.5 ábra: Geoszęfikus egyensúly kétitégű közegeben. A belső elválasztó felületnek a közélebbi pólus irányában történő egyenletes emelkedése olyan stacionárius áramlással van egyensúlyban, mely keletre történik és a felső (melegebb) rétegben gyorsabb (ott a sebesség nagyságát jelző kör nagyobb sugarú).

felület behorpad és változása jóval erősebb, mint a felszíné, de \(\eta + \frac{\chi g'}{g} \) még pozitív, akkor az áramlás baroklin, és az alsó közege jóval lassabban mozog, mint a felső (6.6b ábra). Ha viszont, \(\chi < -\frac{\eta g'}{g} \), akkor az alsó áramlás iránya is megváltozik: ott ciklonális forgású a sebesség (6.6c ábra). Ez jól mutatja, hogy rétegzett közegeben csak adott magassági szinten értelmes a ciklonális-anticiklonális megkülönböztetés. A felszín behorpadása esetén is hasonló a helyzet (6.6d-f ábra). Az elválasztó felület erős kidudorodása alul anticiklonálisá teheti az áramlást.

6.6 ábra: Geoszęfikus egyensúly kétitégű közegeben a külső és belső felszíni alak viszonyának függvényében. A külső felszín kiemelkedése alatt az áramlás mindig anticiklonális (a)-(c), de az alsó rétegben egyre lassab, ha a belső felszín változása ellenkező előjelű mint a külsősé (b), sőt előjelét is megváltozhatja (c). Hasonló a helyzet a külső felszín behorpadása esetén is (d)-(f).
Az ábra tehetség az \(x, y \) síkon közel forgásszimmetrikus elrendezések oldalmézetének, de az \(y \) irányban transzlációinvariáns felszíni alakokhoz tartozónak is.
6.6 Frontok forgatott rendszerekben, a
Margules-összefüggés

Légköri vagy óceáni hideg vagy meleg áramlatok határában, a felszint vagy aljzatot elérő frontok mentén hirtelen sűrűség-ugrás következik be. A frontok viselkedésének leírására a kétregeges közéltés jól alkalmazható. Legyen a sűrű közeget elválasztó felület alakja az egyszerűség kedvéért y-tól függően (6.7 ábra). Mivel a két közeget elválasztó felület most nem egy átlagos vízszintes vonal körül ingadok, a sűrűbb közege vastagságát érdemes változónak tekintenünk, melyet \(h = h(x, t) \) vel jelölünk. A frontonál mentén, az alsó felszínen természetesen \(h = 0 \). A geosztrofikus áramlás feltétele ekkor (6.43), (6.44) szerint

\[
v_{g,2} - v_{g,1} = \frac{d}{f_0} \frac{dh}{dx}. \tag{6.47}
\]

Ez azt mutatja, hogy a frontonallal párhuzamosan sebességugrás alakul ki. A nyugatról érkező hideg frontban \((dh/dx < 0)\) az északi feléken \(v_{g,2} < v_{g,1} \). Ezek szerint a frontban jelentős déle mutató, azaz északi szél komponens is megjelenik: a déli szél gyengül vagy ellenkező irányúvá változik.

6.7 ábra: Nyugalomban levő front körüli áramlás geosztrofikus egyensúlyban. A sűrű (hideg) közege a \(h(x) \) függvény határoltt tartományban helyezkedik el. Az áramlási sebesség mindkét közegben merőleges a rajz síkjára és az alsó közegben gyengebb az \(y \) irányú sebesség. A rajzon a \(\gamma \) délelszög negatív.

Az összefüggést a front véges \(\gamma \) hajlásszögű élére alkalmazva

\[
v_{g,2} - v_{g,1} = \frac{f_0}{f_0} g \gamma. \tag{6.48}
\]

Ez az ún. Margules-féle összefüggés a front két oldalán megfigyelhető sebességkülönbség, a redukált gravitációs gyorsulás és az elválasztó felület vízszintesszel bezárt \(\gamma \) délelszögé között teremt kapcsolatot. Ez a szög nő a sebességkülönbséggel és a Coriolis-paraméterrel. A meredekség típusú értéke a közepes szélességeken \((f_0 = 10^{-11} 1/s) 100-szoros redukcióval és 10 m/s sebességkülönbséggel számolva 1/100. A szög tehát kicsi, s ezért tangensével helyettesíthető. A front hajlásszögének sűrűség, ill. hőmérsékletkülönbséggel megadott kifejezése ezért

\[
\gamma = \frac{f_0}{g} \Delta \theta \left(v_{g,2} - v_{g,1} \right) = \frac{f_0}{g \alpha \Delta T} \left(v_{g,2} - v_{g,1} \right). \tag{6.49}
\]

Az utolsó átalakításban felhasználjuk, hogy \(\Delta \theta = \alpha \Delta T \), ahol \(\alpha \) a hőtágulási együttható és \(\Delta T \) a felső és az alsó közeg közötti hőmérsékletkülönbség. A szög abszolútértéke nő a sűrűség-, ill. hőmérsékletkülönbség csökkenésével.
A Margules-összefüggés geosztrofikus egyensúlyban lévő stacionárius frontokra vonatkozik. A valóságos frontok a kvázigeosztrofikus földi áramlásokban alakulnak ki, s ezért a fenti elmélet csak első közelítés. A frontok általában mozognak, s a felszínnel való súrlódás alakjukat befolyásolja.

6.8 ábra: Mozgó légköri frontok alakja (oldalnézet) és sematikus áramlási viszonyaik. A sebességnek a frontra merőleges és azzal párhuzamos komponense is van. (a) Hideg front. Alakja hasonlít a gravitációs áramlathoz. A front előtti heves feláramlás zivatarfelhők kialakulására vezet. (b) Meleg front. A feláramlás gyengébb, de a meleg levegő messze a front előtt is felhatol a hideg föl, s rétegfelhők megjelenésével jár.

A légköri hideg frontok (hideg levegő behatolása a meleg alá) határfelülete előregyűrűdik a felszínen eltűnő sebesség miatt (6.8a, 6.9 ábra). A hideg front légköri sebességi mozgása ezért hasonlít egy gravitációs áramlathoz (5.14 fejezet), de nem szabad elfelejtenünk, hogy bennük a frontra merőleges áramlás is jelentős. Az általában gyorsan mozgó hideg frontok délésője 1/50 körüli. A hideg légrét egy nagysága 1 – 2 km, melyet az elválasztó felület a frontvonal mögött mintegy 50 km-re már elér.

6.9 ábra: Hidegfront (bal oldali fehér légkörem) áthaladása a Balatonon 2001. május 18-án [Horváth Ákos (OMSZ Sófoki Világhíjazó Obszervatórium) felvétele].

A légköri meleg front (a meleg levegő a lassan mozgó hideg légrétélő főlé csüszik) határfelülete a súrlódás miatt ellaposodik (6.8b ábra). A meleg frontok délésője kisebb, 1/200-1/300. Az 1 km-es szintet az elválasztó felület tehát kb. 300 km-rel a front előtt éri el.

Mozgó frontok mentén az alsó légréttegek ütköznek, összéaramlás történik, s ez feláramlás- hoz vezet (6.8 ábra). A frontok ezért a felszínen mindig lokális nyomáscsökkenéssel járnak. A

Frontvonal mentén a felszínű izobárok megtörnek (6.10 ábra), hiszen a front átvonulása a sűrűbb közege többlet-nyomásának megjelenésével jár. Ősszhangban van ez azzal is, hogy a felszínű szélsebességben ugrás történik a frontra merőleges irányban: szélfordulás tapasztalható (6.11 ábra). A feláramlás a hideg front mentén erőteljesebb a nagyobb dőlésség miatt. A hideg front mentén ezért a főáramló levegőből nagy vízaratfelhők képződnek (6.9 ábra). Meleg front esetén a feláramlás lassább és kiterjed az egész élválasztó felület feletti levegőrétegre, vagyis a felszínről nézve megőzi a frontot. A meleg levegő felfutása rétegéfelhők kialakulására vezet, melyek átlagos vastagsága annál kisebb, mind távolabb (és magasabbra) vagyunk a fronttól. Az égen megjelenő pélhe (cirrusz) felhők ezért közeledő meleg frontra utalnak.

Térjünk meg vissza a geosztrófikus közeltéshez és vizsgáljunk egy konkrét nemlineáris élválasztó felület alakot (6.12a ábra). Legyen

\[h(x) = h_0(1 - e^{-x/r_0}), \quad (6.50) \]

s az egyszerűség kedvéért tegyük fel, hogy a híghabb közegeben a sebesség eltűnik. A sebesség a sűrű közegeben északra mutat, s értéke (6.47) szerint

\[v_{g2}(x) = \frac{g' h_0}{f_0 r_0} e^{-x/r_0}. \quad (6.51) \]

A sebesség tehát gyorsan csökken a frontvonal mögött. A teljes anyagtranszport

\[v_{g2}(x)h(x) = \frac{g' h_0^2}{f_0 r_0} (1 - e^{-x/r_0}) e^{-x/r_0}. \quad (6.52) \]

Ez a mennyiség a frontvonalattal \(r_0 \ln 2 \) távolságra maximális.

A (6.51) kifejezést a frontvonal helyén, \(x = 0 \)-ra kiértékelve, Ősszhangban vagyunk a (6.48) Margules-összefüggéssel. Ebben a lép ben a meredekséget a \(h_0 \) rétegvastagság és az \(r_0 \) lecsengési paraméter határozza meg: \(\gamma = h_0 / r_0 \), s a front menti sebesség ezért \(v_{g2} = g' h_0 / (f_0 r_0) \).

Érdemes ugyanazt a modellt óceáni meleg frontra is alkalmazni egy \(H \) vastagságú közege felső határán (6.12b ábra). Ha a meleg közeg kelet felé mélyül, akkor északra irányuló áramlás alakul ki a front mentén. A sebességet és az anyagtranszportot a fenti képletek adják. A külső felszín alakja is következik, hiszen az alsó közegeben csak úgy tűnhet el a sebesség, ha \(gdh/dx + g'd(dH - h)/dx = 0 \), ahonén

\[\eta(x) = \frac{\Delta p}{\varrho_0} h(x). \quad (6.53) \]

A meleg folyadék északra történő áramlása tehát felszínű kidudorodással jár, amint a homogén esetben (2.17 fejezet) már láttunk. Mivel az anyagtranszport egy \(r_0 \) vastagságú tartományra korlátozódik, ez a front modell egyben óceáni áramlatok, így a Golf-áramlat modellje is. Érdemes ismét megfigyelni, hogy a belső alakváltozás mellett a külső elhanyagolhatóan kicsi, hiszen \(\Delta \varrho \ll \varrho_0 \).
6.11 ábra: Hidrofronttal járó paraméterváltozások a 6.9 ábrán látható front esetén. Figyelemreméltó a jelentős szélfordulás, ill. szélsebesség, és hőmérsékletváltozás a 16 óra után néhány percel áthaladó front jeleként [Horváth Ákos adatai].

6.7 A geosztrófikus egyensúly beállása

Ha kissé eltávolodunk a geosztrófikus egyensúlytól, s időfüggést is megengedünk, megérthetjük, hogy egy kezdeti ugrásszerű sűrűségkülönbségből hogyan alakul ki az egyensúlyi konfiguráció. Az elválasztott felület alakját a potenciális örvényesség megmaradása határozza meg. Használjuk ismét a kétrétegű közelítést, s vizsgáljunk egy meleg frontot, mely kezdetben a pozitív x tengely mentén helyezkedik el, véges H_1 állandó vastagsággal (6.13a ábra). Az alatta levő sűrű réteg vastagsága H_2.

Az y koordinátától független $\mathbf{u}(x) = (0, v(x))$ áramlást feltételezve, elhanyagolható felszíni alakváltozás esetén a potenciális örvényesség az egyes kőzegekben

\[
q_i = \frac{f_0 + \frac{\partial v_i}{\partial x}}{h_i} H_i, \quad i = 1, 2, \tag{6.54}
\]

ahol $h_1 = h$ a felső réteg pillanatnyi vastagsága és $h_2 = H - h$. Mivel kezdetben nem volt mozgás, $q_i = f_0$. A megmaradási tételből következik, hogy $\frac{\partial v_i}{\partial x} = f_0(h_i/H_i - 1)$.

A végállapotban (6.13b ábra) az áramlások geosztrófikusak, ezért igaz rájuk a (6.47) össze-
6.12 ábra: Az r_0 távolságon exponentiálisan lecsengő függvényvel leírt frontok geosztrófikus egyensúlyban. (a) Hideg front az aljzaton. (b) Meleg front a folyadék felszíné alatt. Ez egyben a Golf-áramlat modelljének tekinthető, annak az amerikai partvonallal párhuzamosan futó szakaszában. A pólus felé irányuló áramlás a front melletti r_0 vastagságú tartományban jelentős.

6.13 ábra: A geosztrófikus egyensúly beállása kezdetben függőleges elválasztó felület esetén. (a) A meleg közeg a pozitív félegyenes mentén állandó H_1 vastagságú rétegből indul. (b) A végállapotot exponentiális függvény írja le, mely az R' belső Rossby-sugáron cseng le az eredeti H_1 mélységig. A front is éppen R' távolságot mozdul el. A geosztrófikus egyensúlyi front meredeksége $|\gamma| \approx H_1/R'$. A függés. Ebből

$$\frac{\partial v_{g,2}}{\partial x} - \frac{\partial v_{g,1}}{\partial x} = f_0 \left(\frac{H-h}{H_1} - \frac{h}{H_1} \right) = \frac{g'}{f_0} \frac{d^2 h}{dx^2}. \tag{6.55}$$

Ennek a lineáris egyenletnek megoldása exponentiális lecsengés a

$$\frac{\sqrt{g' H_1 H'}}{f_0} \tag{6.56}$$

távolságon, mely nem más mint a (6.18) belső Rossby-sugár. Az egyensúlyi alak tehát

$$h = H_1 \left(1 - e^{-(x-x_0)/R'} \right), \tag{6.57}$$

ahol x_0 a front élének koordinátája a végállapotban (6.13b ábra). Az utóbbi értéket abból kaphatjuk meg, hogy a teljes anyagmennyiség változatlan, tehát $\int_0^{\infty} (H_1 - h) dx = \int_{-x_0}^{0} h dx$. Ebből az adódik, hogy $x_0 = R'$, vagyis az elmozdulás nagyságát is az R' belső Rossby-sugár határozza meg! Szókép ezért R'-t belső deformációs sugárnak is nevezni3. (A partmenti feláramlásokban játszott szerepére nézve l. 13.1 függelék.)

3Eredményünk a $g' \to g$ ($H_2/H \to 1$) helyettesítéssel a homogén közeg szakad felszínén a H_1 szintkülönbségű lépőcső kísémlása utáni alakját adjja meg. Az átménetek ekkor a $\sqrt{gH_1}/|f_0|$ kisű Rossby-sugárnyi tartományon történik.
Az előbb esetekre alkalmazva ez azt jelenti, hogy a frontok, tengeráramlatok vastagságát a belső Rossby-sugár határozza meg: \(r_0 = R' \). Az előző fejezet értelmében a frontok dőlésszögét is a belső Rossby-sugár szabja meg

\[
|\gamma| \approx \frac{H}{R'} \approx \frac{|f_0|}{N},
\]

legalábbis geosztrofikus egyensúlyban. Az \(Fn \) frekvencia-arány (6.35) definiciójára alapján az eredmény azt is mutatja, hogy a dőlésszög \(1/Fn \) rendű.

A geosztrofikus egyensúly beállása forgatott hengeres kísérlettel demonstrálható. Ha kezdetben a henger közepén egy kisebb átmérőjű hengerrel elválasztjuk az eltérő sűrűségű folyadékok, akkor a kis henger eltávolítása után gravitációs áramlat indul meg sugárirányban. A nem forgatott rendszerrel ellentétben azonban elegendően nagy szögsebesség esetén az áramlat nem éri el a nagyobb henger külső falát, mert belső Rossby-sugárnyi elmozdulás után a sugárirányú mozgás megszűnik. Ezzel egyidejűleg tangenciális áramlás jön létre, s kialakul a geosztrofikus egyensúly.

Amennyiben az induló gravitációs áramlat partvonal mentén halad, a Coriolis-erő a partvonal felé terelheti az áramást, s ez arra vezet, hogy az áramlás partra merőleges jellegzetes mérete is belső Rossby-sugár nagyságről lenne (6.15 ábra). Ez analóg a belső Kelvin-hullámok viselkedésével, noha az ilyen gravitációs áramlat a Kelvin-hullámok legfeljebb nemlineáris változatának tekinthető. Dél-Amerika és Ausztrália keleti partjai mellett erős szelekkel járó frontok szoktak megjelenni, melyek a déli sarki hideg levegő Egyenlítő felé áramlásával kapcsolatosak, miközben azt (a déli feltétek balra térő) Coriolis-gyorsulás a parti hegyvonulatok mentén koncentrálja.

6.8 Geosztrofikus egyensúly folytonos rétegzettségű folyadékbán

Gyors forgatás esetén folytonos rétegzettség mellett is igaz, hogy a hidrodinamikai gyorsulás elhanyagolható a többi gyorsulás mellett. A meglepő új vonás az, hogy (6.7) szerint ekkor tetszőleges időfüggően \(\mathbf{\gamma} \equiv \mathbf{\gamma}(x, y, z) \) sűrűségeloszlás esetén kialakul egy stacionáris geosztrofikus

áramlás, melynek komponensei

\[v_y = \frac{g}{f_0} \frac{\partial \eta}{\partial x} + \frac{g}{\varrho_0 f_0} \frac{\partial}{\partial x} \int_k^H \varrho \, dz', \quad u_y = -\frac{g}{f_0} \frac{\partial \eta}{\partial y} - \frac{g}{\varrho_0 f_0} \frac{\partial}{\partial y} \int_k^H \varrho \, dz'. \] \hspace{1cm} (6.59)

Az integrálók felső határában az \(\eta \) felszínű alakot elhanyagoltuk, hiszen az mindig kicsi a teljes \(H \) mélységéhez képest. A fentiekből következik, hogy az áramlás magasságfüggő, noha az \(f_0 \)-ékn közelítésben minden egyes vízszintes síkban divergenciamentes.

A felszíni forma kiküszöbölhető, amennyiben tudjuk, hogy a folyadék nagy mélységben mozgatlan. Ekkor tehát létezik egy olyan \(z_0 \) szint, amelyben a geosztfikus áramlás eltűnik. A \(z_0 \) szintre felir (6.59), egyenletek

\[0 = \frac{g}{f_0} \frac{\partial \eta}{\partial x} + \frac{g}{\varrho_0 f_0} \frac{\partial}{\partial x} \int_{z_0}^H \varrho \, dz', \quad 0 = -\frac{g}{f_0} \frac{\partial \eta}{\partial y} - \frac{g}{\varrho_0 f_0} \frac{\partial}{\partial y} \int_{z_0}^H \varrho \, dz'. \] \hspace{1cm} (6.60)

melyek egyben használhatók a felszíni alak meghatározására is. Ezeket az egyenleteket az érdetiekből kívonva:

\[v_y = -\frac{g}{\varrho_0 f_0} \frac{\partial}{\partial x} \int_{z_0}^z \varrho \, dz', \quad u_y = \frac{g}{\varrho_0 f_0} \frac{\partial}{\partial y} \int_{z_0}^z \varrho \, dz'. \] \hspace{1cm} (6.61)

A stacionárius, nem vízszintes rétegzettségű sűrűségeloszlás a felszíni alaktól függetlenül is egyértelműen meghatároz egy geosztfikus áramlást. A geosztfikus egysúly egyik fontos új vonása, hogy a Coriolis-erő képes egyensúlyt tartani a ferde rétegzettségből adódó gravitációs nyomásgradiensésekkel is. A Coriolis-hatás következtében tehát olyan sűrűségeloszlások is stacionáriusak lehetnek, melyek eltérnek a helyzeti energia minimumával megvalósított függőleges rétegzettstől. Az ilyen állapot külső energia betáplálása nélkül is fennmarad, de mint látni fogjuk nem feltétlenül stabil. Érdemes néhány fontos esetet külön megvizsgálnunk.

Megjegyezzük, hogy függőleges rétegzettség, \(\varrho = \varrho(z) \) esetén az integrálók függetlenek a vízszintes koordinátaktól, így ilyenkor a (6.59) geosztfikus áramlás teljes mértékben megegyezik a homogén közeghezbeli, azaz egyedül a hídrostatikai nyomáskritikáltól való eltérést megadó \(p'/ \) dinamikai nyomás határozza meg. Ebből az is következik, hogy a \(\psi \) áramlás függvénye \(\psi = p'/(f_0 \varrho_0) \).

6.8.1 A termikus áramlás

Tegyük fel, hogy a geosztfikus áramlás az aljzaton, vagyis a \(z = z_0 = 0 \) szinten tűnik el. A (6.59) sebességkomponenseket \(z \) szerint deriválva ekkor

\[\frac{\partial u_y}{\partial z} = \frac{g}{\varrho_0 f_0} \frac{\partial \varrho}{\partial y}, \quad \frac{\partial v_y}{\partial z} = -\frac{g}{\varrho_0 f_0} \frac{\partial \varrho}{\partial x}. \]
A sűrűséggradiens vízszintes komponense tehát egyértelműen meghatározódik a geoszférikus sebesség magasságfüggését. Vegyük őssze, hogy a sűrűséggradiens kelet-nyugati (x irányú) komponense az észak-déli sebesség változását okozza a magassággal, és fordítva. Az északi féltéken \(\rho_0 > 0 \) pl. az észak felé növekvő sűrűség a keletre irányuló áramlás sebességének növekedését okozza a magassággal (6.16 ábra).

6.16 ábra: A termikus áramlás a ferden elhelyezkedő sűrűségfelületekhez tartozó geoszférikus áramlás. Ha az emelkedés a pólus irányában történik, és a felületek figyelte nek az \(x \) koordinátától, akkor felfelé haladva egyre erősebb keletre mutató áramlást (nyugati szelet) tapasztalunk. A \(\gamma \) meredek ság arányos az áramlás \(U/H \) gradiensével.

Ha a sűrűség nem fiúgg \(x \)-től és a \(\partial \rho/\partial y \) deriválttán alandó, akkor a geoszférikus áramlás lineárisan erősödik (6.16 ábra):

\[
\dot{u}_g(z) \equiv U(z) = \frac{g}{\rho_0 \partial_0} \frac{\partial \rho}{\partial y} \equiv \frac{U}{H} \quad (6.63)
\]

Ilyen mozgás homogén forgatott folyadékban nem alakulhat ki, hiszen ott egyedül a felszín alak határozza meg az áramlást, mely ezért független a magasságtól.

Mivel a valóságban a sűrűségeloszlás \(x, y \)-függés rendszerint a hőmérséklet eloszlás inhomonogénítása okozza, a (6.63) geoszférikus áramlást termikus áramlásnak, a meteorológiában termikus szének nevezik. A vízszintes síkban kialakult hőmérsékletkülönbségek jelentős szelérőlődeshez vezethetnek a magasabb légretégekben, ahol a \(z \) teljesen más erősségű lehet mint a felszínen. A (6.62) egyenletek lehetőségét adnak arra is, hogy a sűrűségeloszlás ismeretében kivetkezhető a légkör magasabb vagy az oceánok mélyebb rétegeiben létrejövő áramlásokra, melyek közvetlen módon nehezen mérhetők.

A \(\Delta T \) hőmérsékletkülönbség hatására kialakuló termikus áramlás \(U/H \) sebességgradiense a (6.63) összefüggés alapján becsülihető, mint \(g \Delta \rho/([f_0 \partial_0 L]) \), ahol \(L \) a vízszintes méret. Itt \(\Delta \rho \) a vízszintes síkbeli hőmérsékletkülönbség következőben fennálló sűrűségkülönbség. A \(\Delta \rho = \rho_0 \Delta T \) összefüggés (\(\alpha \) a hőtágulási együttható, \(\Delta T > 0 \) miatt a felszín termikus sebesség nagysága az

\[
U = \frac{g \partial_0 \Delta T H}{|f_0 L|} \quad (6.64)
\]

kifejezéssel becsülihető. Ennek alapján \(L = 1000 \) km távolságon 10 fokos hőmérsékletkülönbség esetén a sebesség a levegőben \(30 \) m/s, az óceánban pedig valamivel kisebb, mint \(1 \) m/s.

A (6.63) termikus áramlás analóg a kétretegű leírásban az észak felélélő elválásztó felületek esetén kapott eredménnyel, mely szerint a felső szinten a keletre irányuló sebesség erősebb, mint

\footnote{4A csak sűrűségváltozásból adódó szelérőlődés nem jár irányváltozással, mint a viszkozitásból származó Ekman-retegben.}
alul (6.5 ábra). Az azonos sűrűségű felületek iránytangense $\gamma = -(\partial \tilde{g} / \partial y)/(\partial \tilde{g} / \partial z)$. Mivel a z szerinti derivált nyilván negatív, a szög pozitív, azaz az azonos sűrűségű felületek észak felé emelkednek. A (6.63) alapján ez a meredekség

$$\gamma = \frac{f_0}{N^2} \frac{U}{H} = \frac{f_0 U}{g \alpha \Delta T}$$ (6.65)

A (6.49) összefüggés tehát a termikus áramlás diszkrét változatát jelenti.

6.8.2 A Golf-áramlat gyűrűinek forgása

A Golf-áramlat gyűrűi leszakadásuk után közel forgásszimmetrikusak, a síkbeli koordinátáktól csak a tengelyüktől mért r távolságon keresztül függnek. Bennük a sűrűségeloszlás nem állandó, hanem emiatt helyfüggvény mutat. Közelítő alakként a

$$\tilde{g}(z, r) = \Delta \tilde{g} e^{-r^2/r_0^2 + (z-H)/h_0} + \tilde{g}(z)$$ (6.66)

sűrűségeloszlást választjuk. Ez tekinthető úgy is, mint valamely $\tilde{g}(z)$ tetszőleges függőleges rétegzettségek az r-függvényű keresztül módosított változata. Itt $h_0 = 100 - 500$ m a gyűrű mélységi kiterjedése, $\Delta \tilde{g}$ pedig a gyűrű középpontjában és attól távol mért felszíni sűrűségek különbsége. A meleg gyűrűkben $\Delta \tilde{g}$ negatív, a hidegekben pozitív. Mivel $h_0 \ll H$, ahol H a teljes vízmélység, a radiális koordinátától függő járulék a néhány szor h_0 mélységben már elhanyagolható. A gyűrű $r_0 \approx 50$ km sugara nem új paraméter, mert látjuk, hogy a Golf-áramlat vastagságát a belső Rossby-sugár határozza meg, mely $R' = \sqrt{\bar{g}}(\Delta \tilde{g} / \bar{g})/h_0$ nagyságrendű.

Geostrofikus állapotot feltételezve, a (6.61) egyenlet szerint a kialakuló radiális sebesség

$$|\mathbf{u}_g|(z, r) = \frac{2 \bar{g} |\Delta \tilde{g}| h_0 r}{\bar{g}_0 r_0} e^{-r^2/r_0^2 + (z-H)/h_0}.$$ (6.67)

Az eredmény nem függ attól, hogy a z_0 referencia szintet hogyan választjuk, ha az sokkal mélyebben van, mint a gyűrűk alja ($z_0 \ll H-h_0$), hiszen a levágás exponenciális, sekkor $\exp((z_0 - H)/h_0)$ jó közelítéssel nulláznak értelmezhet. A sebesség lefélé csökken; minden mélységi szinten a tengelyen eltűnik, onn belőle haladva először lineárisan nő, majd az r_0 távolságon túl exponenciálisan lecseng.

A felszíni alak ugyanakkor (6.60)-ból:

$$\eta = -\frac{1}{\bar{g}_0} \int_{z_0}^{H} \bar{g} dz.$$ (6.68)

A sűrűségeloszlást behelyettesítve

$$\eta = -\frac{\Delta \tilde{g}}{\bar{g}_0} h_0 e^{-r^2/r_0^2}.$$ (6.69)

A meleg gyűrűk ($\Delta \tilde{g} < 0$) tehát kidudorodással kapcsolatosak, és anticiklonális forgásuk (6.17 ábra). Az állandó sűrűségű felületek behorpadnak a gyűrűi tengelye körül, az tehát nagynyomású tartományak feled meg. Ezzel egyben megkaptuk az anticiklonális áramlások tipikus alakját folytonos rétegzettség esetén is (6.17 ábra). A ciklonálisokhoz felszíni behorpadás és az állandó sűrűségű felületek tengely körüli kidudorodása tartozik.

6.9 Rossby-hullámok kétértéges közegekben: szemléletes kép

A 6.5 fejezetben láttuk, hogy igen gyors forgatás hatására mindkét rétegben időtől független síkbeli geostrofikus áramlás jön létre, melyhez a (6.45) áramlási függvények tartoznak. Kevesbé gyors forgatás esetén lassú időbeli változásokkal járó kvázigeostrofikus áramlás alakul ki. A homogén közeghez hasonlóan (2.5 fejezet) a sekélyfolyadék-dinamika ekkor mindkét rétegben ekeválen a potenciális örvényesség megmaradásával, ezért a továbbiakban csak ezt a törvényt használjuk.

Tekintsünk egy felülről zárt folyadékot (merev lap közelítés), melyben az elválasztó felület kis lokális kidudorodását hoztuk létre (6.18a ábra). Az alsó, sűrűbb rétegben ez egyértelmű nyomásnövekedést jelent. A maximum körül ezért alul anticiklonális jellegű (de nem egészen stacionáris áramlás) jön létre. A felső réteg szempontjából az elválasztó felület pillanatnyi kidudorodása hasonló hatású, mint egy homogén közegben az alsó domborzat kiemelkedése, s ezért ott ciklonális az áramlás.

A felső rétegben az elválasztó felszín kidudorodásától keletre a folyadék sebessége északra mutat. A részecskék így olyan tartományba kerülnek (az Északi-sark felé közelelből), ahol az f planetáris örvényesség erősebb. A \(q_1 = H_1(f_0 + \beta y)/h_1 \) potenciális örvényesség csak úgy maradhat meg, ha a \(h_1 \) folyadékmélység nő. Ugyanakkor az alsó rétegben a kidudorodástól keletre a folyadék sebessége dére mutat. A részecskék így olyan tartományba kerülnek, ahol a planetáris örvényesség gyengébb. A \(q_2 = H_2(f_0 + \beta y)/h_2 \) potenciális örvényesség csak úgy maradhat meg, ha a \(h_2 \) folyadékmélység csökken. Mindkét rétegen tehát arra a következtetésre jutunk, hogy a keleti oldalon enyhe leáramlásnak kell kialakulnia. Hasonló okokból a nyugati oldalon feláramlás alakul ki, s ezzel az egész lézdeti kidudorodás \textit{nyugatra modul el}.

Tekintsük most az elválasztó felület hullámalakú kezdeti deformációját az \(x \) tengely mentén, mely legyen az egyszerűség kedvéért független a \(y \) koordinátától (6.18b ábra). A köztes felszín kidudorodása körül az áramlás jellege ugyanolyan, mint az előbb tárgyalt esetben. A felszín behorpadása esetén attól keletre feláramlás, nyugatra pedig leáramlás jön létre. A teljes hullám ezért szintén nyugatra halad. Érdemes felhívni a figyelmet arra is, hogy a nyomás az elválasztó felület kitürelkedése alatt maximális, fölötte pedig minimális, és behorpadás esetén fordítva. A legerősebb függőleges áramlás viszont az adott szinten kialakuló nyomási szélseőrtek között tapasztalható. A potenciális örvényesség megmaradása következtében tehát létezik a
6.18 ábra: Belső Rossby-hullámok kialakulási mechanizmusa kéttrétegű közegben. (a) Lokalizált belső felszíni kihidudorodás körüli kvázigicesaltofikus áramlás a felső közegben ciklonális, az alsóban ellentétes irányú. A potenciális örvényesség megmaradása következtében ez mindkét közegben leáramlást kélt a keleti (jobb) oldalon és feláramlást a nyugatin, mely a kihidudorodást nyugati irányba tolja. (b) Hullámalakú belső felszíni forma mozgása.

Rossby-hullámok megfelelője kéttrétegű folyadékban, mely a belső Rossby-hullám, vagy a baroklin Rossby-hullám nevet viseli. A homogén folyadék szabad felszínen kapcsolatos kvázigicesaltofikus jelenségek tehát a kéttrétegű folyadék belső felszíni mozgásainak megfelelői. Mivel az utóbbiakat a teljes g gyorsulás helyett a $g' \leq g$ redukált gyorsulás határozza meg, a jellegzetes távolagságokat ennek arányában csökkentett. Azt várjuk, hogy a lineáris belső Rossby-hullám diszperziós relációja (2.45)-nek megfelelően

$$\omega_0 = -\beta \frac{k_x}{k^2 + R_y^2}, \quad (6.70)$$

ahol R_y a belső Rossby-sugár. Mivel ez általában sokkal kisebb a R külső Rossby-sugárnál, a belső Rossby-hullámok diszperziós relációjában a nevezőbeli második tag rendszerint nem határozhato el, szemben a külső Rossby-hullám esetével. A (6.70) diszperziós reláció pontos levezetéséhez szükségünk van a kéttrétegű folyadék kvázigicesaltofikus egyenletére.

6.10 A kvázigicesaltofikus egyenlet kéttrétegű közegben

A H_i átlagos rétegvastagságokhoz képest csekély η külső és χ belső felszíni ingadozást feltételezve és a Föld sugaránál kisebb vízszintes kiterjedésű áramlásokat vizsgálva, az egyes rétegek potenciális örvényessége:

$$q_i = \frac{\zeta_i + f}{1 + (h_i - H_i)/H_i} \approx \zeta_i + f(1 - h_i - H_i) \approx \zeta_i + f - \frac{f_0}{H_i} (h_i - H_i), \quad (6.71)$$

$i = 1, 2$. Az átalakításokban kihasználtuk, hogy a $(h_i - H_i)/H_i$ relatív vastagságingadozás, a ζ_i örvényesség, és a Coriolis-paraméter helyfüggéséből adódó $f - f_0 = \beta y$ változás kicsi, egymással vett szorzatuk tehát elhanyagolható. Mivel a kvázigicesaltofikus közelítés gyengén időfüggő áramlásokat ír le, a potenciális örvényesség kifejezésében szereplő tagok időderítváltja kicsi. Ezért a ζ_i örvényesség és a pillanatnyi rétegvastagság ugyanúgy fejezhető ki a ψ_i kvázigicesaltofikus áramlás függvényével, mint geosztrofikus egyensúlyban. Irhatjuk tehát, hogy $\zeta_i = \Delta \psi_i$. Másrészt

\footnote{Folytonosan rétegezett közegben a diszperziós reláció $\omega_0 = -\beta k_x/(k^2 + R_y^2)$, ahol R_y az (6.33) n-edik Rossby-sugár (l. 13.3. fejezet).}
\[h_1 - H_1 = \eta - \chi \text{ és } h_2 - H_2 = \chi \] (az utóbbi kifejezésben felhasználtuk, hogy az aljzat vízszintes), s ezért (6.45) alapján

\[h_2 - H_2 = f_0 \frac{g}{g'} (\psi_2 - \psi_1), \quad h_1 - H_1 = f_0 \frac{g}{g'} (\psi_1 - \psi_2). \tag{6.72} \]

A \(q_i \) potenciális örvényességek megmaradásából így a

\[
\frac{d}{dt} \left(\Delta \psi_1 + \beta y - \frac{f_0^2}{g H_1} \psi_1 - \frac{f_0^2}{g' H_1} (\psi_1 - \psi_2) \right) = 0, \tag{6.73}
\]

egyenletrendszert adókik. A teljes időderivált az \(i = 1, 2 \) rétegben a

\[
\frac{d}{dt} = \frac{\partial}{\partial t} + \frac{\partial \psi_1}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi_2}{\partial y} \frac{\partial}{\partial x} \tag{6.75}
\]

kifejezést jelenti. A fenti csatolt nemlineáris egyenletrendszer a kétéregű közéltés kvázigeosztrofikus egyenlete. A merev lap közéltés azt jelenti, hogy az \(\eta \) felszíni ingadozás elhanyagolható \(H_1 \) mellett, ezért \(h_1 - H_1 \)-ben, s következőképpen a (14.29) egyenletben a \(\psi_1 \)-gyel arányos tag nem jelenik meg. A kvázigeosztrofikus mozgást ekkor tehát csakis az elválászfélélet teljesik elviselkedése és a \(g' \) reduktált gyorsulás határozza meg, az \(1/g \)-vel arányos tag nem jelenik meg (\(g \) formálisan végében).

6.11 Lineáris Rossby-hullámok kétéregű közegekben

Tekintsük a linearizált kvázigeosztrofikus egyenleteket a merev lap közéltésben: Ekkor

\[
\frac{\partial}{\partial t} \left(\Delta \psi_1 - \frac{f_0^2}{g' H_1} (\psi_1 - \psi_2) \right) + \beta \frac{\partial \psi_1}{\partial x} = 0, \tag{6.76}
\]

\[
\frac{\partial}{\partial t} \left(\Delta \psi_2 + \frac{f_0^2}{g' H_2} (\psi_1 - \psi_2) \right) + \beta \frac{\partial \psi_2}{\partial x} = 0. \tag{6.77}
\]

Az \(x \) irányban haladó hullámokat leíró áramlási függvényeket \(\psi_i = \psi_{i,0} \exp(\imath \omega_i t - \imath k_x x) \) alakban keresve, az

\[
\omega_0 \left(\kappa_x^2 + \frac{f_0^2}{g' H_1} \right) + \beta k_x \psi_{i,0} = \omega_0 \frac{f_0^2}{g' H_1} \psi_{2,0}, \tag{6.78}
\]

\[
\omega_0 \frac{f_0^2}{g' H_2} \psi_{1,0} = \left(\omega_0 \left(\kappa_x^2 + \frac{f_0^2}{g' H_2} + \beta k_x \right) \right) \psi_{2,0} \tag{6.79}
\]

polarizációs egyenletre jutunk. Az amplitudók kiküszöbölésével a

\[
\left(\frac{\beta k_x}{\omega_0} + \kappa_x^2 + \frac{f_0^2}{g' H_1} + \frac{f_0^2}{g' H_2} \right) \left(\frac{\beta k_x}{\omega_0} + \kappa_x^2 \right) = 0 \tag{6.80}
\]

összefüggést kapjuk. Az első tényleg akkor tűnik el, ha

\[
\omega_0 = -\frac{\beta k_x}{\kappa_x^2 + R'}, \tag{6.81}
\]

170
ahol R' a (6.18) belső Rossby-sugár. Ez a (6.70) diszperziós reláció x irányú terjedéshez tartozó speciális esete. A (6.78), (6.79) egyenletekből azt kapjuk, hogy ekkor $\psi_{1,0}/\psi_{2,0} = -H_1/H_2$, azaz az áramlás a két rétegben **ellenőrzés** előjelű. Az ilyen belső, baroklin Rossby-hullám mellett létezik a másik megoldásként adódó

$$\omega_0 = -\frac{\beta}{k_e} \quad (6.82)$$

diszperziós relációjú barotróp Rossby-hullám is. Az ehhez tartozó amplitudók (6.79) szerint azonos nagyságúak: $\psi_{1,0}/\psi_{2,0} = 1$. A barotróp Rossby-hullámban a két réteg azonosan mozog, s ezért nem csoda, hogy visszakapunk a homogén közegben kialakuló, felszíni változással nem járó Rossby-hullám (2.37) diszperziós relációját.

Amennyiben a különbő felszín mozoghat, a teljes (14.29), (14.30) egyenletrendszer lineárisált változatát kell megoldanunk, ahol (14.29)-ben szerepel $f_0^2 \psi_1/(gH_1)$ is. Az ω_0-ra kapott egyenlet ekkor nem faktorizálódik, de a $g > g'$ feltétel miatt a két gyök élesen kettévállik. A barotróp módhusban $\psi_{1,0}/\psi_{2,0} \approx 1$, s a diszperziós relációban a különbő Rossby-sugár jelenik meg. A baroklin módhusban (6.81) jó közelítéssel érvényben marad, s igaz az is, hogy a két közeg ellentétesen mozog, $\psi_{1,0}/\psi_{2,0} \approx -H_1/H_2$. A merev lap közelítés tehát csakély eltéréssel megadja ismét a szabad felszínhez tartozó baroklin megoldást is.

6.12 A baroklin instabilitás: szemléletes kép

Geosztrozfikus egyensúlyban olyan áramlások is kialakulhatnak, melyekben az állandó sürűségű felületek fordók. Ezt az állapotot csakis az erős forgatás tartatja fenn, s nyilván nem felel meg a potenciális energia minimumának, hiszen ahhoz vízszintes rétegzédés tartozik. Tipikus példa erre a termikus áramlás (6.8.1 fejezet), melyet a légkörben az északi félgombón a sarkok felé hulló levegő tart fenn (az állandó sürűségű felületek észak felé emelkednek), s melyhez a magassággal erősödő nyugati szél tartozik. Hasonlóan az oceánban, ahol az amerikai partokat elhagyó Golf-áramlat kelet felé fordul, ott éppen az áramlat választja ketté a sarki hideg tengervizet az egyenlőtől melegől, s így termikus áramlásnak is tekinthető. Az észak felé emelkedő sürűségfelületek geosztrozfikus egyensúly megoldások, de nem feltétlenül stabillak.

Az instabilitás lehetősége egyszerű gondolatmenettel megmutatható. Tekintünk egy folytonosan rétegzett közeget, melyben a sürűségfelületek északra emelkednek. Kövessünk egy folyadékelemet (a 6.14 ábrán O-val jelölt pontot), melyet egyensúlyi helyzetéből kissé kimosztunk, s az elmozdulás északra és felfelé történik, ráadásul az azonos sürűségű felületek γ felületi szöggel egyenlő nagyságú (6.19) ábra. A folyadék így alacsonyabb sürűségű környezetbe kerül (az ábrán az O' pont), s ezért lefelé mozol el. Ezáltal kisebbre került kimondulási állapotához, mely tehát stabil. Merőben más a helyzet a γ szögnél alacsonyabb szögből történő elmozdulásokra. A folyadék részecské ekkor a sajátjának nagyobb sürűségű közegbe kerül (O'' pont), rá eredő felhajtóerő hat, ezért emelkedik, s így távolodik eredeti állapotától. A kezdeti állapot tehát *instabil* minden olyan elmozdulásra, mely a vízszintes sík és az állandó sürűségű felületek által bezárt szögtartományba esik. Az ilyen elmozdulások következtében az állandó sürűségű felület a vízszintes felé fordul, tehát helyzeti energia szabadul fel. Ez a jelenség homogén folyadékban nem fordulhat elő, ezért az instabilitást *baroklin instabilitásnak* hívjuk. Az instabilitás hajtóeréje tehát a döntött sűrűségfelületekben felhalmozódott helyzeti energia. Ez az energia elegendően lapos szögből zajló zavaráramlás hatására felszabadul, az áramlás laminárisáét megtör, és erősödő hullámmozgásra, baroklin hullámok kialakulására vezet. A termikus áramlások tehát instabilak. Még ha a kezdeti áramlás többé-kevésbé homogén is, hajlamos arra, hogy benne a közel vízszintes síkbeli kis zavarok fedőföjdjénak.

Az instabilitás jellegzetes λ_e hullámhosszat annak alapján becsülhetjük meg, hogy a forgatott rétegzett közeg egyetlen karakterisztikus távolsága az R' belső Rossby-sugár. Ezért a kritikus
6.19 ábra: A baroklin instabilitás lehetősége termikus áramlásban. A folytonos rétegzettesség közegeben a döntött sűrűség-félletek és a vízszintes sík közötti (satírozott) tartományba eső elmozdulás a kiindulása helyzetetől történő távolodást eredményez. A kiindulási helyzet az O-O' elmozdulásra nézve instabil (az O-O'-re stabil).

hullámhossz ezzel arányos:

\[\lambda_c \sim R'. \quad (6.83) \]

A baroklin instabilitás tehát a belső Rossby-sugárzal összemérhető hosszúságú hullámokra következik be. Ennek megfelelően a \(k_c = 2\pi/\lambda_c \) kritikus hullámszám

\[k_c = CR^{n-1}, \quad (6.84) \]

ahol \(C \) egy dimenzióttal arányossági ténység.

Az egyre erősödő mozgás csak eleinte tartja meg a hullámalakot, utána a nagy amplitudójú nemlineáris viselkedés már más jellegű. Noha a kiváltó ok nem az egymás fölötti rétegek közötti sebességkülönbség, a nyírás, a nemlineáris hullám alakja 'felülnézetből' hasonlítthat a Kelvin–Helmholtz-instabilitásban láttatotthoz, csak sokkal nagyobb távoláskállal. Jól lokalizált áramlások, mint a jet stream vagy a Golf-áramlat esetében a baroklin instabilitás az áramlás begyűrődéséhez, meanderezéséhez vezet (6.20 ábra). Végző soron a begyűrődésekből alakulnak ki nagy leváló örvények, mint a ciklonok (1. ábra) vagy a Golf-áramlat gyűrűi (2. ábra). Ez az a mechanizmus, mely jelentős hőcserét tesz lehetővé az egyenlítői meleg és a sarki hideg közegek között, jóval hatékonyabban mint az egyszerű hővezetés.

6.20 ábra: A baroklin instabilitás következtében megjelenő nagy amplitudójú baroklin hullámok lehetséges alakjai (felülnézet). (a) Begyűrődő hullámok (a Kelvin–Helmholtz-hullámokhoz hasonló szerkezet). (b) Meanderező áramlás

A mérsékeltői ciklonok legfontosabb keletkezési helye a sarki hideg légtömegeket az egyenlítőhöz közelebb eső melegebb légtömegektől elválasztó poláris front. Ez a felszínén a 40-50 fokos szélességek tartományába esik, de rendszerint nem szélességi kör mentén, hanem nagy amplitudójú Rossby-hullámszerű mozgást mutatva. Mivel a hideg leugró a felszínén az Egyenlítő, a meleg pedig a közelebbi sarok felé tart (s mindkettőt eltéri a Coriolis-erő, mely a termikus
szelet okozza), a poláris front mentén eleve alacsony nyomás uralkodik, hiszen itt lassú össze- és feláramlás történik. A lokális sűrűség-, ill., hőmérsékletkülönbség a poláris front mentén a legnagyobb, a termikus szél is általában itt a legerősebb, s ezért ebben a tartomány várható a barokín instabilitás legerőteljesebb megnyílváนlása.

Az egyszerűség kedvéért gondoljuk az északi feltekére, s tegyük fel, hogy a poláris front rövid szakasza egyenes, s itt egyelőre geosztrófikus egyensúly áll fenn (6.21a ábra). Amennyiben a magasabb légértegekbén valamilyen perturbáció történik, pl. valamilyik állandó sűrűségű felület behorpad, lokális ciklonális áramlás jön létre az alacsony légértegekben. Ez a behorpadástól keletre kissé északra tolja a frontvonalat. Így meleg levegő kerül hideg környezetbe, ezért ott feláramlás indul meg. A felszíni nyomás lecsökken, s e pont mint centrum körül is kialakul egy ciklonális áramlás. A felszíni áramlás tehát a magas légkőri ciklonális áramlást erősíti és így a hidrodinamikai viszonyok egyre jobban eltérnek a termikus szélnek megfelelőtől.

A ciklonális áramlás a centrumtól nyugatra a hideg levegőt a meleg levegő alá tolja. Ott mozgó hideg front alakul ki, a másik oldalon pedig meleg front (6.21b ábra). Az erősödő örvényesség és a feláramlás a felszíni suródlás miatt a planetáris határrétegben spirálisan becsavarodó mozgással jár (4.3 fejezet), ezért a frontvonalak is enyhén begőrülnek6.

6.21 ábra: A mérőszektori ciklonok kialakulásának sematikus rajza az északi feltekén, felszíni viszonyok. (a) Kündülési állapot: a poláris front (egyenes vonal) nem mozog. (b) Kis perturbáció: a meleg feláramlás miatt létrejövő ciklonális mozgás a nyugati oldalon mozgó hideg frontot (kis háromszögekkel jelölt görbe), a keletin pedig mozgó meleg frontot (kis félkörökkel jelölt görbe) hoz létre. (c) A közepstádium: a frontvonalak begőrülnek, a hideg front kezd utódéni a meleget (a ciklon középpontja a termikus szél miatt kelet felé mozog). (d) A végállapot (oklózlófronttal): a meleg levegő az alacsony nyomású központ körül mindenütt a felső légértegekből szorult, az instabilitás hajtóereje megszűnt.

Az átlagos termikus szél a kifejlődőben lévő ciklon keletre sodorja, s így a felszínen a me-

6Különösen viláros ciklon alakulhat ki, ha a jetstream a felszíni alacsony nyomású központ fölé kerül, hiszen akkor a fenti gyors áramlás a levegőt megszivája, és erős feláramlást okoz.
leg front észak-keletre mozdul, de általában jóval lassabban, mint a dél-keletre haladó hideg front, melyet a felszíni nyugati szél támogat. A meleg levegő ekkor már csak egy viszonylag kis szögtartományt foglal el a felszínen (6.21c ábra).

A meleg levegő kiszerítése tovább folytatódik, s végül a felszíni frontok összezárodnak, ún. okklúziós front jön létre (kis háromszöggel és félkörökkel együtt jelölt vonal a 6.21d ábrán), melynek mindkét oldalán hideg levegő található (köztük csekély hőmérsékletkülönbséggel). A felszíni meleg levegő magasabb szintre emelése befolyásolódott, s a ciklon teljes felszínű területét előállította a hideg levegő, a poláris front maga délebbre került. A ciklon mozgásához használható potenciális energia ezzel felemészödött, s ezért a ciklon ezután lassan elhal. A teljes folyamat hasonlít a hullámintézethez (tekintsük a 6.21 ábrát egy pillanatra oldalnézeti képekn), melyben a kezdletben kis amplitudójú hullám egyre délebb maximumú lesz, átbugik és megtörök, azaz energiája kis kialakuló turbulens mozgássá alakul.

A ciklonok teljes életciklusa néhány nap, s ez időjárásunk változásának jellegzetes ideje. Tipikus méretük R' belső Rossby-sugárnyi, tehát néhány 1000 km. Általában csoportosan keletkeznek, s ilyenkor a köztük lévő távolság is ugyanilyen nagyságrendű, összhangban a (6.83) egyenlettel. Az egész baroklini hullám megjelenésében ilyenkor hasonlít a Kelvin–Helmholtz-instabilitás következtében létrejövő hullámkohó (I. hullámintézi hasonlat), de hosszú hullámvonulat megfigyelésére nem számíthatunk, mert a belső Rossby-sugár nem fér rá sokszor a mérsékeltővi szélességi körökre (6.22 ábra).

A baroklin instabilitás a forgatás és rétegzett ség együtt hatásának egyik legfontosabb megnyilvánulása. Az instabilitás következtében kialakuló mozgás alapvetően befolyásolja a környezeti áramlásokat, így pl. az egész mérsékeltővi éghajlat jellegét. A baroklin instabilitás fontosságának felismerése és első leírása J. Charney nevéhez fűződik, a ciklonképződés kialakulásának mechanizmusá pedig V. Bjerknes-éhez. Ebből mára kiterjed elmélet alakult ki, melyet a geofizikai folyadékdinamika egyik legjelentősebb eredményeke tekinthetünk.

6.13 A baroklin instabilitás kétéregű közegben

Tekintsünk egy kétéregű közeget merev lap közelítésben. A közeg eleinte geozstrófikus egyensúlyban van észak felé igen enyhén emelkedő belső elválasztó felülettel az északi feltekén. Ha
a dőllesszög \(\gamma \), akkor a két réteg közötti keletre mutató sebességek különbsége \((6.46)\) alapján \(\Delta U = \gamma g' / f_0 \). Az egyszerűsítő kevésbé legyenek a rétegek azonos átlagos vastagságúak: \(H_1 = H_2 = H/2 \), melyből az következik, hogy a belső Rossby-sugár \((1. 6.18)\)

\[
R' = \frac{\sqrt{\gamma'} T'}{2 f_0}.
\]

(6.85)

Célszerű a jelenséget olyan koordinátarendszerből vizsgálni, melyben a felső közeg \(U = \Delta U/2 \) sebességgel mozog keletre, az alsó pedig \(-U\) sebességgel nyugatra.

A \((14.29), (14.30)\) kétrétegű kvázigeostrófikus egyenletben az áramlási függvényeket úgy a

\[
\psi_1 = -U y + \psi'_1, \quad \psi_2 = U y + \psi'_2
\]

(6.86)

alakban vesszük fel, ahol \(\psi'_i \) a két közeg kis perturbációit leíró időfüggő áramlási függvények. Ezt behelyettesítve és csak a lineáris tagokat megtartva:

\[
\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right) \left(\Delta \psi'_1 + \frac{R'^2}{2} (\psi'_2 - \psi'_1) \right) + (\beta + R'^2 U) \frac{\partial \psi'_1}{\partial x} = 0,
\]

(6.87)

\[
\left(\frac{\partial}{\partial t} - U \frac{\partial}{\partial x} \right) \left(\Delta \psi'_2 - \frac{R'^2}{2} (\psi'_2 - \psi'_1) \right) + (\beta - R'^2 U) \frac{\partial \psi'_2}{\partial x} = 0.
\]

(6.88)

Az utolsó tagok abból kivétel, hogy a \((14.29), (14.30)\) egyenletekben fellépő \(\psi_1 - \psi_2 \) különbség vezető rendben \(-2U y\), mely ugyanolyan jellegű járuléket ad a lineáris egyenletben, mint a \(\beta \) tag. A baroklin hullámokat a \(\psi_i = \psi_{i,0} \exp (i \omega t - i k_x x) \) alakban keresve a

\[
\left[(\omega_0 - U k_x) (k_x^2 + \frac{R'^2}{2}) + k_x (\beta + R'^2 U) \right] \psi_{1,0} = \left(\omega_0 - U k_x \right) \frac{R'^2}{2} \psi_{2,0},
\]

(6.89)

\[
\left[(\omega_0 + U k_x) (k_x^2 + \frac{R'^2}{2}) + k_x (\beta - R'^2 U) \right] \psi_{2,0} = \left(\omega_0 + U k_x \right) \frac{R'^2}{2} \psi_{1,0}
\]

(6.90)

eyenletrendszerhez jutunk. A \(\psi_{i,0} \) amplitudók kiküszöbölése után a diszperziós reláció meghatározó összefüggés:

\[
\left(\omega_0 (k_x R^2 + \frac{1}{2}) + k_x \beta R^2 \right)^2 - \frac{\omega_0^2}{4} = U^2 k_x^2 \left(k_x^2 R^2 - \frac{1}{2}^2 - \frac{1}{4} \right).
\]

(6.91)

Tekintsük először az \(f_0 \)-sik közelítést, melyben a \(\beta \)-effektus nincs jelen. Ha \(\beta = 0 \), a frekvencia közvetlenül leolvasható, mint

\[
\omega_0^2 = U^2 k_x^2 (k_x R^2 - 1/(k_x R^2 + 1)).
\]

(6.92)

A frekvencia imaginárius, ha

\[
k_x < k_c \equiv R'^{-1}.
\]

(6.93)

Minden, a belső Rossby-számm reciprokánál kisebb hullámszámra, vagyis \(2\pi R'^{-1} \) nagyobb hullámhosszakra a perturbáció instabí. Az ilyen hullám amplitudója időben nő, növekedésének gyorsaságát az \(s \equiv \omega_0 / i \) instabiliitás exponens jellemzi \((6.23a\) ábra)

\[
s = U k_x \sqrt{\frac{1 - (k_x R^2)^2}{(k_x R^2)^2 + 1}}.
\]

(6.94)

A leggyorsabban növekvő amplitudó ahhoz a \(k^* \) hullámszámhoz tartozik, melyre \(s \) maximális. Ez

\[
k^* = \sqrt{2 - 1} R'^{-1} \approx 0,64 R'^{-1}.
\]

(6.95)
A megfelelő hullámhossz $2\pi/k^* \approx 10R'$, mely a légkörben 3000 km, az óceánban 300 km nagyságrendű. Az ehhez tartozó instabilitási exponens

$$s^* = (\sqrt{2} - 1) \frac{U}{R'}.$$

(6.96)

Ennek reciproka $U = 10$ m/s légköri sebességgel kb. 3 nap, óceáni 1 m/s értékkel pedig kb. 1 nap kétszerűdési (pontosabban e-szereződési) időt jelent.

6.23 ábra: A baroklin instabilitás s instabilitási exponense kétetegű közegben. (a) f_0-sik közeliités. Az instabilitási tartomány és a leggyorsabban növekvő hullám k^* hullámszáma nem függ a termikus áramlás sebességétől. (b) β-sik közeliités. Instabilitás csak az U_c kritikus sebességnél gyorsabb termikus áramlásokra lép fel. A szaggatott vonal a kritikus sebességhöz tartozó instabilitási exponens négyzetet mutatja, mely a k_x hullámszámánál lesz zérus. $U = U_c$-re tehát csak ez az egyetlen hullámszám nem stabil. Növekvő sebességekre egyre szélesebb az instabilitási tartomány, s egyre nagyobb az exponens. A megjelzett görbe $U = 2U_c$-hez tartozik.

A realisabb esetben, amikor a Föld gőröblétet kifejező β-paramétert nem hanyagoljuk el, a másodfokú egyenlet megoldásából a diszperziós relációra azt kapjuk, hogy

$$\omega_0 = -\beta^2 \frac{2k_x^2 R^2 + 1}{k_x^2 (k_x^2 R^2 + 1)} \pm k_x \frac{\sqrt{\beta^2 R^4/4 + U^2 k_x^4 R^4 (k_x^2 R^4 - 1)}}{k_x^2 R^2 (k_x^2 R^2 + 1)}.$$

(6.97)

Megjegyezzük, hogy termikus áramlás hiányában ($U = 0$-ra) visszakapjuk a Rossby-hullámok (6.81), (6.82) diszperziós relációit. Az $U \neq 0$ eset tehát úgy is tekinthető, mint a termikus áramlás stabilitásának vizsgálata Rossby-hullámszerű perturbációkra. Amíg (6.97) valós, a termikus áramlás jelenlétében kialakuló Rossby-hullámok diszperziós relációt adja. A gyökjel alatti kifejezés minimumát a

$$k_c = 2^{-1/4} R^{-1} = 0,84 R'^{-1}$$

(6.98)

kritikus hullámszámnál veszi fel, ahol értéke

$$R^2 \beta^2 - U^2.$$

(6.99)

Ez akkor lehet negatív, ha az U sebesség abszolútértéke nagyobb a $\beta R'^2$ kritikus értéknél:

$$|U| > U_c \equiv \beta R'^2.$$

(6.100)

A kritikus hullámszám jelentése az, hogy az U_c sebességnél éppen a k_c hullámszám váltoinstabil. Numerikus értéke valamivel nagyobb az f_0-sik közeltésszel kapott k^*-nél. A kritikus sebességre a $\beta = 10^{-11}$ 1/(ms) értékel a légkörben 10 m/s-ot kapunk, s a kritikus hullámhossz 3700 km. Az óceánban U_c kisebb 1 m/s-nál, és a kritikus hullámhossz néhány száz km.
Ha a sebesség nagysága U_r-t meghaladja, akkor egyre nagyobb hullámszámú tartomány válik instabilá. Az instabiliitás exponens $|U| > U_r$ esetén

$$s = \frac{|U|}{R'} \sqrt{(1 - (U_r/U)^2)/4 - (k_x^4 - k_z^4) R'^2},$$

(6.101)

amint a 6.23b ábra mutatja. A β paraméter jelenlétének tehát stabilizáló hatása van, hiszen a lassú áramlások minden hullámszámúval stabilnak bizonyulnak. Ennek oka az, hogy a felszabaduló energia most Rossby-hullámok keltésére is fordítódhat. Az instabilitás csak elegendően nagy sebességkülönbségek esetén jelenik meg, hasonlóan a Kelvin–Helmholtz-instabilitáshoz. A kritikus sebességkülönbség azonban a környezeti áramlásokban szokásos sebességek nagyságrendjébe esik, ezért a baroklin instabilitás kialakulása a β-hatás jelenlétében is gyakorlatilag elkerülhetetlen.

6.14 A baroklin instabilitás kísérleti kimutatása

A forgatott rendszerben oldalról fűtött folyadék áramlásának kísérleti vizsgálata során egy hengert koaxiálisan húrom részre osztanak. A belső kis hengert hidegen tartják, a külső hengergyűrű pedig melegen. Ezek képviselik egy bolygó sarki ill. egyenlőtűi tartományait. A közbenső hengergyűrű ekkor az egyik oldalról melegített, s másikról hűtött tartomány, s a benne elhelyezkedő folyadék mozgását rendszert a legkör modelljének tekintik. A forgatás szögebessége, vagy a hőmérsékletkülönbség függvényében vizsgálható, mikor válak a hengerrizmokmetrikus áramlás instabilá. Ez egyrészt a baroklin instabilitás kísérleti megvalósítását jelenti elhanyagolható β hatás esetén (hiszen az aljzat vizsőszintes), másrészt pedig a globális légkörzet általános tulajdonságainak fel焙ítését is szolgálja.

![Diagram](image)

6.24 ábra: A baroklin instabilitás kimutatásának forgóhengeres kísérleti elrendezése és jellemző adatai.

Kísérleti paraméterként váltottatható az Ω szögebesség, a ΔT hőmérsékletkülönbség, a folyadék H mélysége és a közbenső hengergyűrű L szélessége (6.24 ábra). Az eredményeket dimenzióitlan kombinációk függvényében érdemes megadni, hogy az áramlások hasonlóságú törvényei szerint rögtön leolvasható legyen jelentősük a környezeti jelenségek szempontjából is. A Rossby-számban megjelenő U sebességet célszerű a külső paraméterekkel kifejezni. A termikus áramlás erősségének (6.64) becsélése alapján képzett Rossby-szám (most $f_0 = 2\Omega$)

$$Ro_T \equiv \frac{g \Delta TH}{(2\Omega)^2 L^2},$$

(6.102)
az ún. termikus Rossby-szám. A másik fontos dimenzióitlan paraméter a forgatás erősségét mérő

\[Ta \equiv \frac{\Omega^2 L}{g} \]

(6.103)

Taylor-szám. A \(R_T \) és \(Ta \) paraméter tipikus értéke 10 cm-es \(L \) szélességgel és \(H \) mélységgel, 10 fok hőmérsékletkülönbséggel és percenkénti 3 fordulattal \((\Omega = 0,3 \text{ s}^{-1})\) számolva 0,5, ill. 10\(^{-3}\). Érdemes felhívni a figyelmet arra, hogy a geostrofikus lefrázsban használt dimenzióitlan paraméterekkel összevetve a termikus Rossby-szám a (6.37) Burger-számok felel meg, hiszen \(g\alpha \Delta T/H \) a Brunt–Väisälä-frekvencia négyzetét adja, ha a hőmérsékletgradiens függőleges irányú lenne. A belső Rossby-sugár \(L \cdot Bu \)-ként becsülhető.

A kísérletek eredményei a \(Ta-R_T \) paraméteres konkrét 6.25 ábrával foglalhatók össze. A végtag vonal a stabil forgácsszimmetrikus termikus áramlás tartományát választja el a hullámszerű viselkedéstől, ahol a termikus áramlás már instabil. Ez a vonal tehát a baroklin instabilitás határgörbje. A baroklin hullámok tartományában feltüntettük azt is, hogy hány hullámszeggik jelenik meg a hengeryűrűben. A megfigyelt baroklin hullámok nem kis amplitudójú lineáris rezgések, hanem nagy amplitudójú nemlineáris mozgások. Az instabilitás következtében időben elérte növekvő amplitudót a véges geometria megállítja. A hullámszeggik az \(L \) vastagsággal arányos annak megfelelően, hogy a belső Rossby-sugár is közelítőleg \(L \). Sokszor felismerhető egy meanderező központi jett. Erősödöbb forgatásokra a végállapot mindig az, hogy nagy ciklonális és anticiklonális örvények szakadnak le, melyek száma időben változatlan (6.26 ábra).

6.25 ábra: A forgóhengeres kísérlet eredménye a Taylor-szám és a termikus Rossby-szám által definiált \(Ta-R_T \) paraméterében.

A véges geometria stabilizálja a kis hőmérsékletkülönbséghoz tartozó termikus áramlást. Adott hőmérsékletkülönbség mellett a forgatási sebesség növelése a 6.25 ábra \(Ta-R_T \) síkján egy \(-1\) meredekségű egyenesen lefelé történő elmozdulásnak felel meg. Az egyenes annál feljebb fut, mindig nagyobb \(\Delta T \) Azt látjuk, hogy a létrejövő instabilitás során leggyorsabban növő hullámok hossza (azaz a megfigyelt hullámszeggik) csökken \(\Omega \) növekedésével. Ez összhangban van a

\(^7\)A Taylor-szám legyakrabban használt definiációja \(Ta = \Omega^2 L^4 / \nu^2 \), vagyis az \(\Omega L \) kerületi sebességgel képzett Reynolds-szám négyzete. Esetünkben a Taylor-szám logárithmusá lesz lényeges, s ez a kétfele értelmezésben egy konstans különbséget jelent csak.

\(^8\)A \(Ta \) Taylor-szám az \(\Omega L \) sebességgel képzett külső (1.27) Froude-szám négyzetének felel meg.
vízszintesen korlátozott kiterjedésű közegre vonatkozó egyszerű megfontolás eredményével, miszerint \(\lambda_c \sim R^l \sim 1/|\Omega| \). A nagy külső hőmérsékletkülönbség hatására kialakuló baroklin hullámak hatékony hőcserét hoznak létre, s a folyadék belsejében megnövelik a lokális sűrűségkülönbséget az alsó és felső rétegek között. Az \(R^l \approx N\Omega /2|\Omega| \) belső Rossby-sugár olyan naggyá válhat, hogy az instabil, \(\lambda_c \sim R^l \) hosszúságú hullákok már egyszer sem fénekrá a gyűrűre, s ezzel megszűnik az instabilitás. Ez történik a vastag görbe felső ága mentén.

A globális légkörzés szempontjából a kis Taylor-számoknál tapasztalt viselkedés megfelel a földi alacsony szélességi körök (az Egyenlítő) mentén kialakuló stabil zonális áramlásoknak, hiszen itt a Coriolis-paraméter kicsi. Másrészt ugyanez a tartomány jellemző a lassan forgó bolygók (pl. Vénusz) légkörét, ahol a baroklin instabilitás nem játszik szerepet. A mérés-ektől tépikus hőmérsékletkülönbségek a Földön jóval nagyobbak, mint a szubtrópusiak. Mivel az átlagos Coriolis-paraméter is ugyanezt a tendenciát mutatja e két tartományban, bennek a termikus Rossby-szám (Burger-szám) azonos nagyságrendű, a Taylor-szám viszont nem. A szubtrópusi-ból a mérsékeltégő zónába való átlépés a kísérletben tehát a \(R_{\theta} \approx \) állandó vonal menti jobbra haladásnak felel meg. Az eredmény jól mutatja, hogy a baroklin instabilitás és a nagy amplitudójú baroklin hullákok megjelenése a földi viszonyok között elkerülhetetlen a közepes szélességeken.

6.26 ábra: A baroklin instabilitás következtében kialakuló típusos áramlási kép a forgóhengeres kísérletben. A megfelelt tartomány kezdetben egy környű, s az hasad fel ciklonális és anticiklonális örvényekre az instabilitás hatására.
7. fejezet

Turbulencia

A turbulencia olyan áramlás, mely térben is és időben is vélettenszerű, rendezetlen. A sebességterületen minden megjelentés skálán és időben is olyan gyorsan változik, hogy az átlagértékétől való eltérések, a fluktuációk részletei nem ismerhetők meg, őlszerű azokat véletlen változóknak tekinteni. A fluktuációk ráadásul nem kicsik, a turbulencia alapeleven nemlineáris jelenség. Ebben a témakörben ezért az alapegyenletek analitikai megoldása reménytelen, ismereteink elsősorban kísérleti megfigyeléseken, numerikus simulációkon, és dimenzióz megfontolásokon alapulnak.

A turbulencia a nagyon gyors áramlások, ill. erősen fűtött környezetek jellemzője. A turbulencia feltételének pontosabb megfogalmazását kajpja a dimenzióoll számok segítségével: áramló homogén közegben a Reynolds-számnak, fűtött közegben pedig a Rayleigh-számnak igen nagynak kell lennie:

\[Re = \frac{UL}{v} \gg 1, \quad \text{vagy} \quad Ra = \frac{\alpha g \Delta TH^3}{\nu k} \gg 1. \]

A turbulencia ezért azon folyamat végere, minden értékhelyén is tekinthető, melynek során a folyadékok egyre gyorsabban áramolhatnak, vagy egyre erősebben fűtők. E folyamatban az egyszerűbb áramlási formák sorra veszik el stabilitásukat. A rendszer különböző instabilitásokon megy keresztül a turbulencia eléréséig, melyek lehetnek pl. a Kelvin-Helmholtz-instabilitás, a Rayleigh-Bénard-instabilitás, vagy forgatott és fűtött közegben a barokkin instabilitás. A turbulencia tehát egyfajta végállapot, a folyadékmozgás legbonyolultabb állapota, melyhez igen nagy energiabefektetés szükséges, és ezért érték dimenzióoll számokkal jellemzhető. Ennek ellenére a természeten a turbulencia igen gyakori, így például alapvető szerepet játszik a szennyezések terjedése során, a planetáris határértéken, vagy az óceán keveredési rétegben. A környezeti áramlásokat kis skálán, a néhány méteres távolságokon megfigyelve, azok mindig turbulensnek bizonyulnak. Ebben a vélettenszerű folyadékmozgásban mindhárom térbeli inány lényeges szerepet játszik, háromdimenziós turbulenciáról van szó (7.1 ábra). A nagy vízszintes távolságokon viszont, mint láttuk, az áramlások gyakorlatilag kétdimenziósak. A turbulencia jellege alapvetően függ a dimenzióáltól: A háromdimenziós turbulens folyadék "zabog", sok kis örvény figyelhető meg benne. A kétdimenziós viszont ehhez képest simán változik, de vélettenszerűen: nagymértékű örvények jellemzik és a körüladók megfigyelhető "szálas" szerkesztések (7.12, 7.13 ábra). A turbulencia harmadik fajtája a geoszfinkus turbulencia (7.17 ábra), amely a kétdimenziós eset kiterjesztése olyan áramlásokra, melyekben a forgatás és a gőrűlet (β-hatás) is szerepet játszik. Végősorán tehát mind a légkör, mind az óceánok nagyskalájú rendezetlen mozgása geoszfinkus turbulencia (1., 2. ábra).

A turbulenciával járó rendezetlen térbeli áramlás erős keveredést okoz, mely felelősségi a közeg viszkozitását, hővezetését és a diffúziós folyamatokat. A nyugvó aljzat felületi határértéken a \(\nu \), \(k \) és \(D \) transzportegyütthatók a náluk sok nagyságrenddel nagyobb \(\nu_{\text{turb}} \), \(k_{\text{turb}} \) és \(D_{\text{turb}} \) turbulens paraméterekkel helyettesíthetők (7.2 ábra), melyek figyelhetők a molekuláris értékektől! A fallal párhuzamos sebesség abszolútértéke univerzális magassággőgést mutat. Ez a Kármán Tódor által leírt logaritmus sebességprofi minden turbulens határértében előfordul (7.3 ábra).
A légkörösi planetáris határrétegben a legkülönbözőbb vegetációs és domborzati fedettségek mellett pontos mérések bizonyítják érvényességét.

A közege stabil rétegzett sége a turbulencia kialakulását megnehezíti, hiszen függőleges keveredés csak akkor alakulhat ki, ha az egymás fölötti folyadékértékek a átlagsebessége leegyedően külön-

A háromdimenziós turbulencia kialakulásának feltétele rétegzett közegeben az, hogy a

\[
\text{Ri} = \frac{N^2}{(\frac{du}{dz})^2}
\]

Richardson-szám kisebb legyen egy egyéni globális kritikus értéknél. Ez a feltétel teljesül a jelenlendő meleg termikusban. Felszállás közben ezért a környező levegő beoszoródik a termikus és jól elkeve-

A termikus rokon jelen ség a vulkánból felszálló füst, ill. a gejzárok vagy a kéményekből kiáramló meleg levegő mozgása. Összefoglaló néven a pontosberi forrásból folyamatosan kiáramló könnyű közege feláramlása a csóva (plume). Az állandó besodródás miatt a csóva egyre szélesebb, sűrűsége növekszik, sebessége viszont csökken (7.4. ábra). Rétegzett közegei nem emelkedhetet tett-

főlegeség miatt a környező figurális sűrűségét, és ez emelkedés megszűnik. Ez magyarázó, hogy a kitörésben feláramló vulkán hamu és gázok, vagy a kéményszőr nyugván meglepően rövid emelkedés után megáll, s ott visszates inkább a termikus feláramlása jellemzi. Ezek homogenizálják a sűrűséget, és hosszant tartó főés eten a teljes határréteg vastagsága időben nő (7.9 ábra).

A határrétegen kívül, az energiabetépladás helytől távol a turbulencia homogén és izotróp.

den kor a turbulencia különböző mérettel, elhaló, és állandóan újrakeletekő mérvények kölesőnható rendszereire tekinthető. Jellemzően az \(E(k) \) energia-spektrumot használjuk, melynek értéke a k hullámszámú, azaz \(l \approx 1/k \) méretű mérvények mozgásai energiájával arányos. Elegendően nagy-

Reynolds-számok esetén az energia-spektrum hatványfüggvény alakú:

\[
E(k) \sim k^{-m},
\]

ahol az \(m \) kitevő pozitív.

A háromdimenziós turbulenciában a nagy mérvények egyre kisebbnek bomlanak (7.10 ábra). Ennek következtében az energia a nagy, betáplálási mérettől a kis méretek felé áramlik. A folya-
matot az \(m = 5/3 \) Kolmogorov-féle ezponens jellemzi (7.11 ábra). Az örvények bomlása egy aló-

határ, az \(L_4 \) disszipációs hossz élérség tart, mely az oceanban és a légkörben is néhány mm.

A kétdimenziós turbulenciában az örvényesség megmaradása a bomlást megakadályozza. Ott fordított a helyzet: a kis örvények összeolvadnak és egymás nagyobbaké nőnek (7.14 ábra). Az energia egyre nagyobb méretű struktúrának adódik át szintén az \(m = 5/3 \) ezponenssel. Ugyanakkor az örvényesség az egyre kisebb méretek irányába áramlik. Az ehhez tartozó spektrum \(m = 3 \) kitevőjű
(7.15 ábra). Az \(l_d \) disszipációs hossz a természetes kősegek kétdimenziós turbulenciájában néhány méter.

A forgatott sejteg jellemző geostrofikus turbulencia is kétdimenziós jellegű. Az energiabelépőlési mechanizmus legtöbbször a jól ismert baroklin instabilitás, melynek jellegzetes mérete a belső Rossby-sugár (7.16 ábra). Az örvények növekedése a \(\beta \)-effektus miatt azonban csak az

\[
L_R = \sqrt{\frac{u'}{\beta}}
\]

Rhines-féle hossz eléréséig történik, ahol \(u' \) a sebességfluktuációk jellegzetes értéke. Ilyen maximális méretű örvényre lehet példa a Jupiter légkörében a Vörös Folt (7.17 ábra). A további fejlődés során az örvények megnyúlnak, majd Rossby-hallámai kocsátaknak ki, melyekből a szélességi körök mentén áramló zonális övek, jutak jönnek létre. Ez az örvősbolygók légkörében meg is figyelhető (7.17 ábra). Mindezt azért nem jelenik meg a földi áramlásokban, mert a Rhines-hossz és a belső Rossby-sugár összegyöködik, azaz az energia nagy méretek irányába történő áramlása a Földön nem fejlődhet ki.

7.1 Az átlagolt hidrodinamikai egyenletek

A turbulens áramlásban a sebességter egy jelentős összetevője állandóan változtatja irányát és nagyságát (7.1 ábra). Mivel e fluktuációknál nem rendelkezhetünk eléggé információval, célzunk azokat egy átlag körül kialakuló véletlen változóknak tekinteni, és azok tulajdonsága alapján az átlagokra vonatkozó hidrodinamikai egyenleteket felírni.

7.1 ábra: A rögzített ráson átáramló folyadék a rács mögött turbulenssé válak, mozgásában egyre több véletlen elem figyelhető meg. A rácsból lendületlen nagy távságtalannal a turbulencia statisztikus tulajdonságai tüjövnek a rácsból, a turbulencia homogén és izotróp. A képen az áramlás balról jobbra történik [Van Dyke].

Bontsuk fel a folyadékmozgásra jellemző valamely \(A(\mathbf{r}, t) \) mennyiséget (mely lehet pl. valamelyik sebességkomponens, a nyomás, a hőmérséklet, stb) ugyanazon mennyiség \(\bar{A}(\mathbf{r}, t) \) átlagára és az átlagtól való eltérést jelző \(A'(\mathbf{r}, t) \) fluktuációra. Az átlagot úgy képezzük, hogy \(\bar{N} \gg 1 \) méret végzünk hasonló körülmények mellett, s az adott helyen és pillanatban mért mennyiségek számítani közepet képezzük: \(\bar{A}(\mathbf{r}, t) = (1/N) \sum_{i=1}^{N} A_i(\mathbf{r}, t) \), ahol \(i \) az egyes mérések sorszáma. Ez az ún. sokaságtárgy. A definíció alapján

\[
A(\mathbf{r}, t) = \bar{A}(\mathbf{r}, t) + A'(\mathbf{r}, t),
\]

és a fluktuációk átlaga zérus:

\[
\bar{A}'(\mathbf{r}, t) = 0.
\]
Mivel a differenciálás és a soksgátlag képzése egymással felcserélhető lineáris művelet, az átlagolt egyenletek lineáris tagjai ugyanolyan formában érvényesek, mint az eredeti mennyiséget tartalmazók. Így például:

$$\frac{\partial A}{\partial t} = \frac{\partial \bar{A}}{\partial t},$$ \hspace{1cm} (7.3)

azaz az időderivált átlaga azonos az átlag időderiváltjával. Hasonlóan, a $\text{div}\mathbf{v} = 0$ összenyomhatatlanási feltétélből azt kapjuk, hogy mind az átlagsebesség, mind a fluktuációk divergencialementesek:

$$\text{div}\mathbf{v} = 0, \quad \text{div}\mathbf{v}' = 0.$$ \hspace{1cm} (7.4)

Merőben más a helyzet a nemlineáris kifejezéseknél. Tekintsük az A mennyiség teljes időderiváltjának advektív tagját, azaz a

$$\langle \mathbf{v}_{\text{grad}} \rangle A = \sum_j (v_{j} + v'_{j}) \frac{\partial (A + A')}{\partial x_j}$$ \hspace{1cm} (7.5)

kifejezést. A visszás és visszötlen tényleg szorzatát tartalmazó tagok átlaga (7.2) alapján zérus, ezért

$$\langle \mathbf{v}_{\text{grad}} \rangle A = \langle \mathbf{v}_{\text{grad}} \rangle \bar{A} + \sum_j v'_{j} \frac{\partial A'}{\partial x_j}.$$ \hspace{1cm} (7.6)

Mivel azonban $\text{div} \mathbf{v}' = 0$, az utolsó tag úgy is írható, mint a $\mathbf{v}'_{j} \overline{A'}$ korreláció deriváltja. Az általános szabály az, hogy az advektív derivált átlaga

$$\langle \mathbf{v}_{\text{grad}} \rangle A = \langle \mathbf{v}_{\text{grad}} \rangle \bar{A} + \sum_j \frac{\partial}{\partial x_j} \overline{A'v'_{j}},$$ \hspace{1cm} (7.7)

Az átlagos advektív deriválhoz tehát járulékot ad az $\overline{A'v'}$ korrelációs vektor divergenciája is.

Fontos következmény adódik ebből a (1.23) Navier–Stokes egyenlet átlagos alakjára. A sebesség i komponensére vonatkozó egyenletben az $A = v_i$ megfeleltetéssel

$$\langle \mathbf{v}_{\text{grad}} \rangle v_i = \langle \mathbf{v}_{\text{grad}} \rangle \bar{v}_i + \sum_j \frac{\partial}{\partial x_j} \overline{v'_{j}v'_{j}}.$$ \hspace{1cm} (7.8)

Az i-edik komponens átlagára vonatkozó egyenlet ezért (az egyszerűség kedvéért homogén, nem forgatott közeget tekintünk)

$$\frac{d}{dt} \bar{v}_i = -\frac{1}{\rho_0} \frac{\partial \bar{\rho}}{\partial x_i} + \sum_j \frac{\partial \bar{v}_i}{\partial x_j} \left(\nu \frac{\partial}{\partial x_j} - \overline{v'_{j}v'_{j}} \right) \equiv \frac{1}{\rho_0} \sum_j \frac{\partial}{\partial x_j} \bar{\sigma}_{ij},$$ \hspace{1cm} (7.9)

ahol a fluktuációkkal korrigált átlagos feszültségtenzor

$$\sigma'_{ij} = -\overline{\rho \delta_{ij}} + \lambda \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i} \right) - \rho_0 \overline{v'_{j}v'_{j}}.$$ \hspace{1cm} (7.10)

Itt $\lambda = \nu\rho_0$ a dinamikai viszkozitás, az első két tag az átlagértékekkal képzett szokásos feszültség, az új,

$$-\rho_0 \overline{v'_{j}v'_{j}}$$ \hspace{1cm} (7.11)

tag pedig az ún. Reynolds-féle feszültség. A fluktuációk jelenléte tehát módosítja a feszültségtenzort, s az új tag független az anyagi paraméterektől. Elnézésre a nemdiagonális $i \neq j$ elemek

184
a fontosak, mert ezek a nyírás megváltozását jelentik, míg az \(i = j \) elemek a nyomáshoz adnak járulékot. A Reynolds-féle tag esetenként lényegesen nagyobb is lehet, mint a nemturbulens járulék. Érdemes megjegyezni, hogy a \(\mathbf{\theta}_j' \) mennyiség úgy is értelmezhető, mint a \(j \) irányú \(\mathbf{\theta}_j' \) impulzusú irányba haladó \(\mathbf{\theta}_j' \) áramának átlaga (vagy fordítva).

Tekintsük most a hővezetési egyenlet átlagát \((A = T)\). Hasonló módon kapjuk, hogy

\[
\frac{d}{dt} T = \sum_j \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial T}{\partial x_j} - v_j' T \right),
\]

ahol \(\kappa \) a hődiffúziós állandó. A fhufluációk tehát megváltoztatják a hővezetési egyenlet jellegét is: Az átlagos hőmérséklettel kapcsolatos \(-\mathbf{\theta}_j' \) grad\(T \) hőáram mellett, megjelenik a \(\mathbf{\theta}_j' \mathbf{v} T \) turbulens hőáram is (mely arányos a hőmennyiségnél a \(\mathbf{\theta} \) sebességfhufluáció olozza áramával).

Amennyiben valamilyen koncentráció, pl. az \(S \) sötétalom diffúzió éven terjed szét, akkor a hagyományos \(-D \) grad \(S \) diffúziós áramhoz hozzáadódik a \(\mathbf{\nabla} \mathbf{S} \) turbulens diffúziós áram:

\[
\frac{d}{dt} S = \sum_j \frac{\partial}{\partial x_j} \left(\kappa \frac{\partial S}{\partial x_j} - v_j' S \right).
\]

Mindkétfajta turbulens áram nagyságban jóval meghaladhatja a hagyományos áramokat: a turbulencia tehát jelentősen felgyorsíthatja a keveredési folyamatokat.

Összefoglalva, a turbulens fhufluációk miatt az advektív derivált nemlinearitásból következően az átlagos térmennyiségekre vonatkozó egyenletekben megjelenik ezen térmennyiségek fhufluáció szorzatának átlagértéke, a korreláció. Ahhoz, hogy az egyenletek egyértelműen megoldhatók legyenek, szükségünk van a korrelációs egyenleteire. Ezek a hidrodinamikai egyenletek beszorzásával átlagolás után egyszerűen megkaphatók, de bennük a háromszoros szorzatok átlagértéke, a hármás korrelációk lépnek fel. Így az egyre magasabb rendű korrelációk végten hírarchiáját kapjuk, mely jól mutatja, hogy a turbulencia teljes leírása csak a fhufluációk statisztikájának pontos ismeretében lenne lehetséges. A gyakorlatban kezelhető egyenleteket csak akkor kapunk, ha feltételezhetjük, hogy egy bizonyos rend fölött a korrelációs függvények mind kifejezhetők alacsonyabb rendűkkel. Ha ez igaz, akkor sikerült a hírarchiát egy véges szinten lezárni. Ez az ún. lezárása (closure) probléma. Az, hogy milyen lezárás alkalmazható, függ attól is, hogy a folyadék mely tartományát vizsgáljuk. Látni fogjuk, hogy a határértégbén már az elsőrendű lezárás (a kétszeres korreláció visszavezetése az átlagértékre) is hasznos közélítést ad.

7.2 A turbulens határérték

Tekintsük egy falhoz közeli turbulens áramlást! Legyen a fal az \(x, y \) síkban, és tegyük fel, hogy az átlagos áramlás a fallal párhuzamos. Ezért a \(v_z \equiv \mathbf{w} \) átlagos sebesség elfünik, a fhufluációk viszont bármilyen irányúak lehetnek, tehát mind \(v'_x \equiv u'_x \), mind \(v'_y \equiv u'_y \), mind \(v'_z \equiv u'_z \) előfordul. Ugyanakkor viszont az átlagossebességek növekednek a faltól távolodva (azaz \(z \) növekedéssel). Ha egy folyadékelem felfelé mozdul el, vagyis \(\mathbf{w}_f \) fhufluációja pozitív, akkor új helyén vízszintes sebessége az ottani átlagossebességnél kisebb lesz, süröldás révén feleke a folyadékot és így általában negatív előjelű \(u'_y, v'_y \) fhufluációt hoz létre. Hasonlóan, ha lefelé mozdul el, vagyis \(\mathbf{w}_f < 0 \), akkor a környező folyadékok gyorsul, és ott pozitív \(u'_y, v'_y \) fhufluáció alakul ki. Átlagosan tehát a függőleges és a vízszintes irányú sebességfhufluációk antikorreláltak a határértégbén, azaz korrelációjuk negatív:

\[
\mathbf{w}_f u'_y < 0, \quad \mathbf{w}_f v'_y < 0.
\]

A (7.11) Reynolds-féle feszültség tehát pozitív, a turbulencia növeli a feszültséget, a viszközítást.
7.2 ábra: A sebességfluktuációk korrelációja negatív a határrétegben. Az $\bar{u}(z)$ átlagos sebesség-profil szerint az x irányban áramló közegebén a $w' > 0$ függőleges sebességfluktúció okozta elmozdulás után a folyadékleme a helyi átlagsebességnél lassabban mozog, a környező folyadékok lassítja és $w' < 0$ negatív vizszintes fluktúciót hoz létre. Az $\bar{w}u'$ < 0 korreláció a feszültséget jelentősen megnyúló. Első közelítésben ez egy $\nu_{turb} \gg \nu$ turbulens viszkozitás bevezetésével vehető figyelembe.

Mivel az antikorreláció megszűnik, ha az átlagsebesség z irányban homogén, célszerű feltételezni, hogy a Reynolds-feszültségek arányosak a megfelelő átlagsebesség függőleges deriváltjával:

$$-\bar{w}u' \sim \frac{\partial \bar{u}}{\partial z}, \quad -\bar{w}v' \sim \frac{\partial \bar{v}}{\partial z}$$

(7.15)

Izotróp sík lap esetén az arányossági tényező független attól, hogy melyik komponensről van szó, ezért az u vizszintes síkbeli sebességre, ill. fluktuációra nézve általánosan írható, hogy

$$-\bar{w}u' = \nu_{turb} \frac{\partial \bar{u}}{\partial z},$$

(7.16)

ahol $\nu_{turb} > 0$ arányossági tényező az ún. turbulens viszkozitás (angolul eddy viscosity). A tapasztalat szerint a Reynolds-feszültség ezen kifejezése jó első közelítés. A turbulens viszkozitás független a ν molekuláris viszkozitástól. A ν_{turb} mennyiségét az egész áramlás határozza meg, függhet ezért pl. a z magasságtól. Tipikus értéke azonban mindig több nagyságrenddel meghaladja a ν molekuláris viszkozitását. A légkörről $\nu_{turb} \approx 1 - 10$ m2/s, az óceánban pedig $\nu_{turb} = 10^{-2}$m2/s (a 10^{-5}, ill. 10^{-6} nagyságrendű molekuláris értékekkel szemben, l. 14.1 táblázat).

A (7.16) turbulens viszkozitási közelítéssel a keresztkorrelációkat visszavezetünk az átlagsebességek deriváltjára, és ezzel a határrétegbeli átlagolt Navier-Stokes-egyenletet lezárjuk. Ráadásul ez ugyanolyan alakúnak adódott, mint a nem átlagolt egyenlet, csak benne a molekuláris és a turbulens viszkozitás összegé lép fel. Az utóbbi nagy értéke miatt ez annak felé meg, hogy az eredeti egyenletben a $\nu \rightarrow \nu_{turb}$ helyettesítést hajtjuk végre, ahogyan azt az Ekman-féle határréteg tárgyalásakor tettük a 4.1 fejezetben.

Aztól független közegebén, melyben a hőmérséklet felfelé csökken, a fluktuáció miatt kialakuló $w' > 0$ feláramlás a folyadékot hidegesebb környezetbe juttatja, melyet ezért félmelegít: $T' > 0$. A $\bar{w}T'$ korreláció ilyenkor pozitív. Általánosan is írhatjuk a (7.16) közelítés szellemében, hogy

$$-\bar{w}T' = \kappa_{turb} \frac{\partial T}{\partial z},$$

(7.17)

ahol $\kappa_{turb} \gg \kappa$ a turbulens hődiffúziós együtható (l. 14.1 táblázat).

Hasonlóan, egy adott anyag, pl. sótartalom szempontjából inhomogén közegebén

$$-\bar{w}S' = D_{turb} \frac{\partial S}{\partial z},$$

(7.18)

186
ahol \(D_{\text{turb}} \gg D \) a turbulens diffúziós együtttható (a ső molekuláris diffúziós állandója pl. vízben \(10^{-9} \text{ m}^2/\text{s} \)). Mivel a turbulens transzport nem az anyagi állandóktól függ, hanem magától az áramlástól, a transzport együttthatók azonos nagyságrendűek. Sokszor jó közelítéssel igaz, hogy
\[\nu_{\text{turb}} = \kappa_{\text{turb}} = D_{\text{turb}}. \]

7.3 A logaritmikus sebességprofil

Megvizsgáljuk, hogy egy fal közvetlen közelében zajló turbulens áramlásra milyen átlagos sebességeloszlás jellemező. Vízszintes sűrűbben átlagos áramlást vizsgálunk, melyben az áramlási sebesség \(\vec{v} \) nagysága csak a \(z \) magasságtól függ. A falhoz elegendően közel, vagyis olyan tartományban, amely a \(z \) magasság sokkal kisebb a határréteg \(D \) vastagságánál, a sebességről feltételezünk, hogy nem függ a határréteg felső peremén érvényes \(u_\infty \) sebességtől. Az \(\bar{u}(z) \) sebesség, vagy \(z \) szerinti deriválja ekkor csak a \(z \) koordinátától, a \(\nu \) kinematikai viszkozitástól, a \(\rho_0 \) sűrűségtől, és a fal felszínén ható \(\tau_0 \) nyírástól függhet. Mivel a tőmeg mértékegységét csak \(\rho_0 \) és \(\tau_0 \) tartalmazza, ezért ez a két mennyiség csak a \(\tau_0/\rho_0 \) hányados formájában fordulhat elő. E hányados négyzetgyöke sebesség mértékegységű, az

\[
\bar{u}(z) \equiv \sqrt{\frac{\tau_0}{\rho_0}} \tag{7.19}
\]

mennyiség az ún. súrlódási sebesség. A \(\tau_0 = 0,1 \text{ N/m}^2 \) tipikus szélnyúlási erősségből a levegőben \(u^* = 30 \text{ cm/s} \), az óceánban pedig \(u^* = 1 \text{ cm/s} \) a súrlódási sebesség.

A határréteg felső peremétől távol az \(\bar{u} \) átlagos sebesség magasság szerinti deriváltja tehát csak \(u^*, \nu \) és \(z \) függvénye lehet:

\[
\frac{d\bar{u}}{dz} = f(u^*, \nu, z), \tag{7.20}
\]

ahol \(f \) egyelőre tetszőleges függvény.

A fal egészen keskeny kis környezetén kívül a turbulens fluktuációk miatt a molekuláris viszkozitás, mint az előző fejezethez látottuk, nem játszik szerepet. Itt tehát a \(\nu \)-függés nem léphet fel, a \(d\bar{u}/dz \) derivált csak \(u^* \) és \(z \) függvénye lehet. Ezekből 1/\(\nu \) dimenziójú mennyiség csakis egyféléképpen képezhető, azaz

\[
\frac{d\bar{u}}{dz} \sim \frac{u^*}{z}. \tag{7.21}
\]

A dimenziótlan arányossági tényezőt az \(1/K \) alakban szokás írni, ahol \(K \) a Kármán-fele konstans, melynek értéke a mérések szerint \(K = 0,41 \). (Kármán Tódor (1881-1963) magyar származású fizikus, a turbulencia kutatója, a repüléstudomány meghatározó alakja.) A fentiekből az átlagos sebesség magasságfüggése

\[
\bar{u}(z) = \frac{u^*}{K} \ln z + \text{konstans}. \tag{7.22}
\]

Ez a logaritmikus sebességprofil, mely műszaki problémákban (pl. vízvezetékekben), és természetes közegekben egyaránt kiállalakul.

Ugyanakkor a fal közvetlen közelében \(\nu \)-lényeges, hiszen a peremfeltétel szerint otta \(\nu \tau_0 d\bar{u}/dz = \tau_0 \), melyből

\[
\bar{u}(z) = \frac{z\tau_0}{\nu \tau_0} \quad \text{vagy } \frac{\bar{u}(z)}{u^*} = \frac{zu^*}{\nu}. \tag{7.23}
\]

Ez egyben azt is mutatja, hogy a \(zu^*/\nu \) kombinációs dimenziótlan, egyfajta lokális Reynolds-szám, \(\nu/u^* \) pedig egy hosszúságdimenziójú mennyiség. A fenti lineáris profil általában a \(\delta_v = 10 \nu/u^* \) távolságig érvényes. A határrétegnek ez, a falhoz igen közeli tartománya a \textit{viszkózus alteg}, \(\delta_v \).
pedig az alréteg vastagsága. Ez mind a légkörben, mind az óceánban kb. 1 mm-nek adódik, az alréteg tehát valóban igen keskeny.

Az alrétegen kívül a (7.22) logaritmusikus sebességprofil érvényes, mely univerzális abban az értelemben, hogy sem a molekularis paraméterektől, sem a határréteg felső peremén érvényes sebességtől nem függ. Ez a tartomány elméletileg a \(z \ll D \) távolságokra korlátozódik, de a megfigyelések szerint a határréteg 10 százalékáig is jó közelítéssel érvényben marad. A faltól távolabb a sebesség eloszlás már \(u_{st} \)-tól is függ, és nem univerzális. A forgatott kövegek határrétegében itt vállik lényegesen az Ekman-spirál elfordulása is.

![Diagram](image)

7.3 ábra: A logaritmusikus sebességprofil: a vízszintes átlagsebesség \(\bar{u}(z) \) nagyságának magasságfüggése a turbulens határrétegben. A \(\delta_x \) vastagságú visközus alrétegben lineáris a magasságfüggés. A határréteg \(D \) vastagságának alsó 10 százalékától az univerzális logaritmusikus alak érvényét veszti. Durva felület esetén a visközus alréteg nem alakulhat ki. \(z^* \) ekkor az a szint, ahol a sebesség eltűnik. Értéke a felület érdességét jellemzi.

A (7.22)-ban fellépő konstans éppen azt mutatja meg, hogy ez milyen \(z^* \) magasságban történik. A durva felületekre vonatkozó logaritmusikus sebességprofil tehát

\[
\bar{u}(z) = \frac{u^*}{K} \ln \frac{z}{z^*}, \quad \text{ha} \quad z \geq z^*. \quad (7.24)
\]

A \(z^* \) távolság a felület durvaságára jellemző ún. érdességi paraméter. A (7.24) előszálas a határréteg-meteorológiában alapvető szerepet játszik. A legkőr al só, kb. 100 méteres rétegében érvényességet nagy pontossággal mérésnek bizonyítják. A \(z^* \) érdességi paraméter értéke alacsony bokrok esetén 20 cm, magas fűre 2 cm, alacsony fűre 5 mm, vízfelszín felett pedig kb. 1 mm.

7.4 Turbulencia rétegzett közegekben

A kövegek stabil rétegződése a turbulencia kialakulását megnehezíti, hiszen ekkor a spontán hidrodinamikai mozgások kétdimenziósak. A térbeli turbulencia kialakulásához függőleges
keverés szükséges. Ehhez, az eddig vizsgált homogén közegekkel szemben, most munkát kell végezni. A munka a gravitáció ellenében történik annak érdekében, hogy a súrló folyadékot magasabb, a könnyebbet pedig alacsonyabb szintre juttassuk. A potenciális energia növeléséhez szükséges energia csakis a folyadék átlagos mozgási energiájából adódhat. Turbulencia ezért rétegzett (független) közegben csak akkor alakulhat ki, ha az egyéms feletti folyadékrétegek különböző vízszintes sebességgel mozognak, s ez a nyírás elegendően erős.

A pontos feltétel megtalálása érdekében tekintsünk két egyéms feletti h vastagságú folyadék-réteget, melyek eltérő vízszintes sebességgel mozognak. Legyen az alsó réteg $\rho_0 + \Delta \rho$, a felső kissé hígabb, ρ sűrűségű. Válasszuk meg koordinátarendszerünket úgy, hogy a felső réteg $\Delta / 2$, az alsó $-\Delta / 2$ sebességgel mozgjon. Ha a két réteg teljesen elkeveredik, akkor az átlagsűrűség nulla lesz, az átlagsűrűség pedig $\rho_0 + \Delta \rho$. Az egységnyi vízszintes felület feletti $2h(\rho_0 + \Delta \rho / 2)$ tömeg súlypontja h magasságban van, mely $2g \Delta h(\rho_0 + \Delta \rho / 2)$ potenciális energiának fele meg. A kezdeti potenciális energia a $h(\rho_0 + \Delta \rho)$ tömeggel $h/2$, ill. a ρ_0 tömeg $3h/2$ magasságban levő súlypontjai miatt $g h^2 (2 \rho_0 + \Delta \rho / 2)$. A potenciális energia tehát növekedett, méghozzá a $g h^2 \Delta \rho (\rho / 2)$ értékkel. Ugyanakkor a kezdeti $(\rho_0 + \Delta \rho) h(\Delta U)^2 / 8$ és $\rho_0 h(\Delta U)^2 / 8$ kINETIKUS energia zérusra esőkent. A mozgási energia változása a sűrűségi különbség csökkenései miatt jól közlekedőesel $\rho_0 h(\Delta U)^2 / 8$. A folyamat csak akkor lehetséges, ha a kINETIKUS energia változása fedezni tudja a helyzeti energiájét, vagyis ha

$$\langle \Delta U \rangle^2 > 2h \frac{\Delta \rho}{\rho_0} g.$$ (7.25)

Turbulens keveredés a teljes $2h$ vastagságú rétegben tehát akkor történhet, ha a h távolságra eső vízszintes sebességkülönbség négyszete meghaladja a jobboldali értéket. Erősebb rétegződést csak erősebb nyírás képes turbuléncé tenni.

Elegendően kis rétegvastagságok esetén $\Delta U / h$ az $\bar{u}(z)$ átlagsűrűség, $\Delta \rho_0 / h$ pedig a $\bar{u}(z)$ sűrűség magasság szerinti deriváltját adja. A turbulencia feltétele tehát a fentié szerint megfogalmazható a

$$R_i \equiv \frac{N^2}{\langle \Delta u \rangle^2}$$ (7.26)

Richardson-szám (L. F. Richardson (1881-1953) angol meteorológus, a turbulencia és az időjárásielre-jelzés első jelentős kutatója) segítségével, ahol N az (5.4) Brun–Váisälä-frekvencia és $\bar{d}u/dz$ a vízszintes átlagsűrűség gradiens. A Richardson-szám tehát

$$R_i = \text{átlagos helyzeti energianövekmény} \quad \text{átlagos mozgási energiavészeteség}$$ (7.27)

A turbulencia rétegzett közegben akkor alakul ki, ha a R_i Richardson-szám kisebb egy R_{ic} kritikus értéknél,

$$R_i < R_{ic},$$ (7.28)

ahol R_{ic} egységnagy sűrűgrendű szám. A Richardson-szám lényeges szerepet játszik a sztrati-fikált turbulencia elméletében. Értelme instabil rétezettseg esetén negatív, hiszen akkor N^2-et formálisan negatívnak kell tekinteni.

Egy H vastagságú rétegzett közegben, melyre ΔU sebességkülönbség jellemező, a Richardson-szám becsülhető a

$$R_{i0} \equiv \frac{\Delta h}{\langle \Delta U \rangle^2}$$ (7.29)

globális Richardson számmal (l. (7.25)), ahol $\Delta h \equiv \Delta \rho(\rho_0 / \rho)$ a redukált gravitációs gyorsulás. Ez a szám lényegében egy belső Froude-szám négyzetének a reciprokja, de ezt a Froude-számot nem az átlagsűrűséggel, hanem a sebességkülönbségek átlagával kell képezni. A globális Richardson-szám értéke mind az óceáni keveredési rétegben, mind a planetáris határétegben 1 körüli.
rétegek általános állapota tehát közel van ahhoz, hogy háromdimenziós turbulencia kialakulhas-
son bennük.

Megjegyezzük, hogy a \(R_i \approx 1 \) feltételből a kevert réteg vastagságára

\[
H \approx \frac{(\Delta U)^2}{g'}
\]

(7.30)
adódik. Ez teljes összhangban van a Kelvin-Helmholtz-instabilitás (5.90) kritikus hullámosszára
kapott feltétellel, amennyiben felhasználjuk, hogy az instabilitás kifejlődése után az örvények által
megkevert, tehát turbulenssé vált réteg vastagsága jól becsühető a kritikus hullámosszával.

7.5 Könnyű közege turbulens áramlása

A turbulencia kifejlődéséhez nemcsak erős sebességnyírás, hanem jelentős felhajtőerő is vezet-
het. Tipikusan ez a helyzet az alulról erősen fűttött folyadékban. A környezeti áramlásokban
áramlásokat határozt, hogy a \(Ra \) Rayleigh-szám igen nagy (10^{16} körüli), a rendszerek messze
kéz körül a kiszorító konvekciós instabilitáson, mely még szabályos áramlásokra vezet ne. Ilyenkor
a konvekció szabálytalan, turbulens feláramlásokkal társul. Ezek jellegzetes formája a termik
(5.44, 5.45 ábra), mellyen kezdődik és a környezetnél könnyebb folyadékelem (pl. melegebb leégőesomag).
Miután hirtelen elvált a kondukciói szint előtt, a termik emelkedése olyan
nyomás, hogy mozgása során peremén nagy örvények keletkeznek. Ezek a könnyező sűrűbb közege
egy részét beáramolja a termik belsejébe, a nagy örvények belül kisebbbe hoznak letre, és
így az egész termik jól keverté válunk. Ez az állandó beszorítás (entainment) arra vezet,
 hogy a termik egyre nagyobbé és egyre sűrűbbé lesz, vagyis feláramlás sebessége lassul. A mozgás
alapvető energiaforrása a sűrűségkülönbségből adódó felhajtőerő.

A termíkokkel rokon jelenség a vulkánból felszálló füst, ill. a gezihúzból vagy a kőménzékből
kiáramló meleg leégő mozgása. Összefoglaló néven ezeket turbulens csővén (plume) nevez-
zük. Ezek a termíkok a hasonlóan, mozgásuk kezdete, kis kiterjedésük, forrásuk pontsz-
erűnek tekinthető, de azokkal ellentétben itt a könnyű anyag utánpótlása állandó biztosított.
A beszorítás itt is alapvető szerepet játszik, és ezért minden csóva felfelé szélesedik és ezzel
párhuzamatosan közege egyre sűrűbbé válunk.

A termíkok és a plume-ok mozgásának megértésében meglepően hatékonyak az egyszerű
dimenziós megfontolások, melyeket a két esetre külön-külön mutatunk be.

7.5.1 Termíkek

A termik mozgásának alapvető paramétere a kezdeti állapotban érvényesülő felhajtőerő.
Kezdetben a \(\rho_0 \) környezeti sűrűségénél \(\Delta \rho_0 \) sűrűséggel hágott \(V_0 \) kiindulási térjegyű folyadékra
a \(B \) fajlagos felhajtőerő értéke

\[
B \equiv g' V_0,
\]

(7.31)
ahol a \(g_0' \) a kezdeti \(g \Delta \rho_0 / \rho_0 \) redukált gyorsulás. A 0 indexet arra használjuk, hogy megkülön-
böztessejük a kezdeti \((z = 0 \) szinten érvényes) értékeit a mozgás során felvettől. Az egyszerűség
kezdéért feltesszük, hogy a környezet sűrűsége állandó, a külső közege nem rétegzt.

Elso közeleltésben a termiket állandó sűrűségű gőmbnek tekintjük, melynek helyzetét közp-
pontja z magasságával jellemző. Keressük, hogy a termik átlagos \(\bar{T} \) sugara, \(\bar{\omega} \) feláramlás-
sebessége, és közének \(\bar{g} \) redukált gyorsulása (vagyis a pillanatnyi sűrűség) hogyan változik a
mozgás során (7.4 ábra).

\(^{1}\) Ha a kiáramlás jelentős kezdősebességgel történik, akkor turbulens jet-ről beszélünk
7.4 ábra: Az emelkedő termik legfontosabb paraméterei. Az emelkedési magasság az idő négyzetgyökével nö: \(z \sim t^{1/2} \), mert felszállás közben egyre több sűrű anyag kerü a termikbe besodródás révén.

Ezek a mennyiségek a \(z \) magasságon kívül csak az egyetlen releváns paramétertől, a \(B \) fajlagos felhajtóerőtől függhetnek. (A teljes \(B \) felhajtóerő azért nem jelenthet meg bennük, mert a meghatározandó mennyiségek egyike sem hordoz tőmeg mértékegységet.) A dimenzióanalízis szellemében feltételezünk, hogy a keresett mennyiség a \(B \) és a \(z \) hatvánnyait tartalmazza, tehát \(B^a z^b \) típusú, legalábbis, ha \(z \) nagyobb egy meghatározott értéknél. Mivel \(B \) mértékegysége m\(^3\)/s\(^2\), a szorzat mértékegysége m\(^{3a+2b}\)/s\(^{2a}\). Az \(\vec{v} \) átlagos sugár méter egységű, mely csak úgy lehetséges, ha \(a = 0, b = 1 \), vagyis a pillanatnyi sugár arányos a termik középpontjának a magasságával:

\[
\vec{v} \sim z. \tag{7.32}
\]

A \(w \) emelkedési sebesség m/s egységű, amelynek \(a = 1/2, b = -1 \) felel meg, azaz

\[
\bar{w} \sim \frac{B^{1/2}}{z}. \tag{7.33}
\]

Végül hasonlóan kapjuk, hogy a redukált gyorsulás

\[
\bar{g'} \sim \frac{B}{z^3}. \tag{7.34}
\]

Az eredmény azt fejezi ki, amit a besodródás jelensége alapján várunk: a termik sugara emelkedése során nő, de közben sűrűségkülönbsége csökken és ezért egyre nehézéksebben emelkedik. A \(z \)-függés pontos alakját a dimenzióanalízis mutatja meg. Ezek szerint pl. a sebesség éppen fordítottan arányos a magassággal. Végül észre, hogy a pillanatnyi magassággal számolt (7.29) globális Richardson-szám, melyben a vízszintes sebességeltérés nagyságrendjét \(\bar{v} \)-gal becsüljük, azaz

\[
\text{\textit{Ri}}_0 = \frac{\overline{g} \bar{v}}{\bar{v}^2}. \tag{7.35}
\]

függően a magasságtól. Ez azt jelenti, hogy ha a Richardson-szám kezdetben a kritikus érték alatt volt, akkor az is marad, azaz a turbulencia feltétele az emelkedés során végig teljesül. Mivel \(\bar{w} \sim 1/\bar{v} \), ebből az is következik, hogy \(B = \bar{g}' z \) fajlagos felhajtóerő is állandó, s ez igazolja utólag, hogy jogos a \(B \) mennyiségét magasságtól független paraméternek tekinteni.

A fenti eredményekből az időfüggés is következik. Mivel a \(z \) magasságban levő részecske \(w \) emelkedési sebessége egyben a \(z \) időderiválja, a hatványmegoldások körében (7.33) csak úgy teljesülhet, ha

\[
z \sim \bar{v} \sim \sqrt{t}, \quad \bar{w} \sim \frac{1}{\sqrt{t}}. \tag{7.36}
\]
7.5.2 Turbulens csóvak (plume-ok)

Az állandó betáplálás miatt a releváns paraméter most az időegységre eső felhajtóerő, vagyis a

\[F \equiv \frac{d_0}{l}Q_0 \]

felhajtóerő-fluxus, ahol \(Q_0 \) a forrásból időegységenként kiáramló könnyű folyadék térfogata. A külső kőzeg sűrűségét először ismét térben állandónak gondoljuk.

A forrásból kiáramló folyadék folytonos csóvát alkot, melynek \(\bar{F} \) átlagos vastagsága a \(z \) magassággal változik. Az \(\bar{F} \) sugarú korongon bele felépíthető, hogy a \(\bar{w} \) átlagos feláramlást jellemező és a sűrűség is állandó. Az utóbbiból képezzük a \(\bar{g}' \) lokális redukált gyorsulást (7.5 ábra).

![Diagram](image)

7.5 ábra: A kismeretű forrásból felszálló turbulens csóva (plume) legfontosabb paraméterei. A besodródás miatt a csóva felfelé vastagodik, a benne mozgó folyadéklemekek lassulnak és sűrűsége is csökken. Homogén környezetben a csóva tetszőleges magasságig eljuthat.

Ezek a mennyiségek a \(z \) magasságon kívül csak az \(F \) felhajtóerő-fluxus függvényei. Mivel \(F \) mértékegysége \(m^4/s^3 \), a dimenzióanalízis \(\bar{w} \) és \(\bar{g}' \) esetén a termíkekétől eltérő eredményre vezet. Azt adja, hogy

\[\bar{F} \sim z, \quad \bar{\tau} \sim \frac{F^{1/3}}{z^{1/3}}, \quad \bar{w} \sim \frac{F^{2/3}}{z^{5/3}} \]

A besodródás miatt a plumen vastagsága is nő a magassággal, sebességük és redukált gyorsulásuk csökken, de a termíkeként lassaban. A (7.35) globális Richardson-szám most a plumen állandó, s ez ekvivalens azzal, hogy \(F = \bar{g}'\bar{w}'\bar{F}^2 \) is állandó. A \(Q = \bar{w}' \bar{F}^2 \) térfogati sebesség viszont a besodródás miatt \(z^{5/3} \) szerint nő.

A (7.39) összefüggés az egyes változók időfüggésére most azt adja, hogy

\[z \sim \bar{F} \sim t^{3/4}, \quad \bar{w} \sim \frac{1}{t^{1/4}} \]

192
A plume-ban levő folyadékelemek emelkedési magassága tehát az eltelt idő háromnegyedik hatványával arányos. Ebből érdekes összefüggés következik a csóva alakjára egyenletes erősségű vízszintes szélben. Mivel a részecske x koordinátája ekkor lineárisan függ az időtől, a csóva alakját a

$$z \sim x^{3/4}$$

fekvő parabola adja.

Homogén közegben a csóva elvileg tetszőleges magasságokba is eljuthat, hiszen a redukált gyorsulás mindig pozitív, a felhajtás során sem tűnik el egészen. Rétegzett közegben a jelenség alapvetően különböző. Stabil rétegeltség esetén egy külső közeg sűrűsége csökkent a magassággal, és ezért a beschränkés miatt sűrűsődő plume egyszercsen eljut egy olyan magasságra, ahol sűrűsége megegyezik a környezetével, azaz, ahol emelkedése megáll. Ez drasztikus eltéréss a homogén közegbeli viselkedéshez képest, és magyarázza azt, hogy a felszálló füst megáll és adott (sokszor meglehetősen alacsony) szinten terjed szét a légkörben (7.6, 7.7 ábra)

Állandó rétegeltség esetén a h maximális emelkedési magasság könnyen megbocsátható. Ez a mennyiség az F fluxuson kívül az N Brunt-Väisälä-frekvenciától is függ. A dimenzióanalízis szerint

$$h \sim \frac{F^{1/4}}{N^{3/4}}.$$

Fügyletemmeljük, hogy az emelkedési magasság igen gyengén függ a fluxustól. Kétszeres magasság eléréséhez az F mennyiséget 16-szorosára kell növelni!

7.6 A turbulens határréteg rétegzett közegben.

A határrétegben a τ_0 nyúrás feszültség mindig lényeges szerepet játszik. A hozzá tartozó jellegzetes sebesség a (7.19) sűrűdési sebesség. Rétegzett közegben a ΔU sebességkülönbség
7.7 ábra: Egyenletesen rétegzett kőzegben felszálló turbulens csőva laboratóriumban. A megfestett édesvíz emelkedése néhány cm után megszűnik.

hatására a turbulencia (7.30) szerint a

$$\frac{\varrho_0 (\Delta U)^2}{g \varrho}$$

(7.44)

vastagságú rétegre terjed ki. A határrétegben ΔU jellegzetes értéke a sűrűsítési sebesség, az $u^* \Delta \rho$ mennyiség pedig értelmezhető a turbulens sűrűségfliktuációk $\bar{u}' \bar{\varrho}'$ függőleges áramköré. A határrétegben a keveredési vastagság jellegzetes értéke ezért az

$$L_M \equiv \frac{\varrho_0 u^*}{K g \bar{u}' \bar{\varrho}}$$

(7.45)

Amennyiben a sűrűségfliktuáció a hőmérséklet változás következménye, $\bar{u}' \bar{\varrho}' = -\alpha \partial \bar{u}' \bar{\varrho}'$ (α a hőtágulási együttható), a Momyhin–Obukhov-féle hossz úgy is írható, mint

$$L_M = -\frac{u^*}{K g \bar{u}' \bar{\varrho}} = -\frac{\varrho_c \bar{u}' \bar{\varrho}'^3}{K g \varrho Q}.$$

(7.46)

Az utolsó egyenlőségben $Q = \varrho c_p \bar{u}' \bar{\varrho}'$ a függőleges turbulens hőáram, c_p az állandó nyomás melletti fajhő Instabil, azaz felfelé csökkenő hőmérsékletű kőzegben a hőáram pozitív. A Momyhin–Obukhov-hossz tehát stabil rétegzettéss mellett pozitív, egyébként negatív előjelű.

A planetáris határrétegben és az óceáni keveredési rétegben a $c_p/(\sqrt{\varrho \varrho})$ paraméterkombináció közel azonos, a Momyhin–Obukhov-hossz tehát mind az óceáni, mind a légkörí határrétegben azonos nagyságrendű. Tipikus értékkük néhányszor tíz méter.

A rétegzett ségg miatt a sebességprofil valamelyest eltér a logaritnikustól. Az átlagos U sebesség deriváltja ekkor ugyanis (7.21) helyett a

$$\frac{du}{dz} = \frac{u^*}{z} \phi \left(\frac{z}{L_M} \right)$$

(7.47)

alakban írható, ahol megjelent a probléma z/L_M új dimenziótlan paramétere (ϕ ennek megfelelően egy dimenziótlan függvény). Amennyiben z kicsi, a ϕ függvény sorbafajtható, és vezető rendben
\(\phi = (1 + c_1 z / |L_M|) / K \), ahol \(c_1 \) konstans. Integrálás után

\[
\bar{u}(z) = \frac{u^*}{K} \left(h \frac{z}{z^*} + c_1 \frac{z}{|L_M|} \right).
\] (7.48)

Ez a rétegzett határrétegekre jellemző ún. log-lineáris sebességprofil. A rétegzettségből adódó korrekció ellenkező előjelű stabil és instabil rétegzettség esetén. A tapasztalat szerint \(c_1 \) pozitív, mely azt jelenti, hogy instabil rétegzettség \(L_M < 0 \) esetén a sebesség lassabban változik a logaritmusnál, mert a függőleges keveredés erősebb, mint a semleges esetben. Ez a tendencia válóban megfigyelhető a planetáris határrétegben.

A Monyin–Obukhov-hossz segítségével meghatározhatjuk azt is, hogyan változik az óceáni keveredési réteg \(h \) vastagsága időben. Feltételezve, hogy a folyadék kezdethez stabilán rétegzett, és az \(N \) Brunt–Váisälä-frekvencia jellemzi. Az idő múlásával a szélnyírás miatt egyre nagyobb \(h \) vastagságú réteg válík jól kevert, azaz homogén sűrűségűvé (7.8 ábra).

\[
\tau_0 = \rho_0 u^* h
\]

7.8 ábra: Az óceáni keveredési réteg \(h \) vastagsága a szélnyírás hatására nő, mert a turbulens örvények által okozott beszorodás révén egyre mélyebbe szintekig homogenizálódnak az eredetileg egyenletesen rétegzett közeg.

A (7.45) Monyin–Obukhov-hosszban \(w' \) becsülhető a réteg \(dh/dt \equiv \dot{h} \) növekedési sebességével, \(\dot{h} \) pedig a Brunt–Váisälä-frekvencia alapján (l. (5.5)) \(\dot{h} = \varrho_0 N^2 h / g \). Feltételezve, hogy \(h \) arányos \(L_M \)-mel,

\[
h \sim \frac{\varrho_0 u^*}{N^2 h^2},
\] (7.49)
melyből \(\dot{h} \sim h^{-2} \). Ennek a differentiálegyenletnek a megoldása az idő köbgyökével arányos, azaz

\[
h \sim \frac{u^*}{N^2 h^{1/3}}.
\] (7.50)

A keveredési réteg vastagsága az idő egyharmadik hatványával nő, annál gyorsabban, minél nagyobb a surlódási sebesség és minél kisebb a Brunt–Váisälä-frekvencia.

A planetáris határrétegeknél csak egy \(abrétegj \) definiálja a Monyin–Obukhov-hossz. A \(z < |L_M| \) tartományban az ún. \(\text{kétnyilvánított} \) konvekció zajlik, melyben a nyírásnak is jelentős szerepe van. A Monyin–Obukhov-hossznál jóval magasabb rétegekben, ahol \(z \gg |L_M| \), a nyírás már elhanyagolható, és a konvekció hasonló jellegű, mint a nem nyírt közegekben, ún. \(\text{szabad} \) konvekció. Ez az a tartomány, melyet a termékek jellemznek. Ennek megfelelően a planetáris határréteg teljes \(h \) vastagsága más módon változik, mint a keveredési réteg (7.9 ábra).

Ez abból becsülhető meg, hogy \(Q \) hőárammal fűtött egységnyi alapterületű közeg \(t \) idő alatt \(Qt \) hót vesz fel, mely kifejezhető az ennek következtében kiadalú \(DT \) hőmérés két változásával is: \(Qt \sim \varrho_0 c_p h \Delta T \). A hőmérés különbözőség \(\Delta \varrho_0 = \alpha \varrho_0 \Delta T \) sűrűségkülönbösségek felel meg.
7.9 ábra: A földfelszín gyors nappali felmelegedése következtében a turbulens határéset alulról fűtőtt közegnek tekinthető. A felszálló termikus hatására egyre mélyebb szintekig homogenizálódik a az eredetileg egyenletesen rétegött közeg. A planetáris határéset \(h \) vastagsága ezért időben nő.

Mivel a kezdeti \(N \) Brunt–Váisälä-frekvencia adott, \(N^2 \sim g \alpha \Delta T/h \) ahol \(h \) a planetáris határéset vastagsága. Ezek szerint \(\Delta T \sim h \), tehát a vastagság négyzetére arányos az idővel. Ebből

\[
h \sim \left(\frac{\alpha g Q}{2 \rho C_p N^2} \right)^{1/2} t^{1/2} \sim \left(\frac{a w^2 T^2}{N} \right)^{1/2} t^{1/2}. \tag{7.51}
\]

A teljes planetáris határéteg tehát gyorsabban változik, mint a keveredési réteg. Az időfüggés ugyanolyan típusú, mint az izolált termikus által homogén közegben elért szintmagasságé (l. 7.36). A változási sebesség egyenesen arányos a hőáram négyzetgyökövé, és fordítva a Brunt–Váisälä-frekvenciával.

7.7 Homogén, izotróp turbulencia

A falakból, akadályoktól, hőforrásoktól távol a turbulens fluktuációk a helytől és az iránytól is függetlenek, a turbulencia homogén és izotróp. Ekkor az összes nemdiagonális Reynolds-feszültség és az átlagos turbulens hőáram is zérus: \(u_i u_j = 0 \), ha \(i \neq j \), és \(u_i^2 = 0 \) minden \(i \)-re. A sebesség \(\mathbf{v} \) turbulens fluktuációt a \(\mathbf{v}^2 = u^2 + v^2 + w^2 \) szórásnégyzet jellemzi. Ezt céléserő felbontani a különböző hullámzásokból adódó járulékokra, és azt írni, hogy

\[
\mathbf{v}^2 = \int E(k)dk. \tag{7.52}
\]

Mivel \(\mathbf{v}^2 \) a mozgási energiával arányos, az \(E(k) \) mennyiség neve az energiaspektrum. Az \(E(k) \) mennyiség jelenti a \(k \) és \(k + \Delta k \) hullámszintartományba eső perturbáció átlagos energiáját. Mivel \(\Delta k \) arányosnak vehető \(k \)-val, \(E(k) \) az \(k \sim 1/k \) méretű örvények átlagos kinetikus energiája, osztva az \(k \) hullámszámmal. A turbulencia izotróp módon abban is tükröződik, hogy az \(E \) mennyiség nem függ a hullámszámvektor irányától: az energiaspektrum csak a hullámszám \(k \) abszolútértékének függvénye.

Az energiaspektrum központi szerepet játszik a turbulencia jellemzésében. Általános alakja hatványfüggvény:

\[
E(k) \sim k^{-m}, \tag{7.53}
\]

ahol \(m \) pozitív szám. A kivető konkrét értéke és a hatvanyalak érvényességé tartománya függ a közeg dimenziójától és attól is, hogy forgatott rendszerről van-e szó. Ezért, mielőtt az energiaspektrumot meghatározónánk, felsorolunk néhány olyan tulajdonságot, mely mindenfajta homogén és izotróp turbulens rendszerre jellemző.
A tapasztalat szerint

- A turbulencia egymásba ágyazott, hosszú életű örvények egymára épülő rendszere, hierarchiája. Az örvények nemlineáris kölcsönhatásuk miatt idővel instabillá válnak, felbomlanak, de helyükön újak képződnek.

- Az energiaátáplálás makroszkópikus skálán történik, és valamilyen \(l_0 \sim 1/k_0 \) méretű örvényeket hoz létre (\(k_0 \) az ilyen örvények hullámzsáma). Ha pl. a turbulenciát rács kéti, akkor \(l_0 \) a rácsállomás (7.1 ábra). Általában \(l_0 \) összémélő a teljes \(L \) lineáris mérettel, de annál néhány nagyságrenddel kisebb is lehet. A betáplált energia a viszkozitás miatt disszipálódik, és ezért bizonyos idő után beállhat egy stacionárius állapot, azaz a fluktuáló mennyiségek statisztikai jellemzői, pl. szórásai időfüggően váltnak.

- Az \(l \sim 1/k \) méretű örvény karakterisztikus ideje az örvény
 \[
 \tau_i = l / \nu' \sim \frac{1}{k \nu'}
 \]
 (7.54)

körülfordulási ideje. Itt \(\nu' \) az örvény két zélé közötti átlagos sebességkülönbség nagysága, azaz a \(k \sim 1/l \) hullámhosszhoz tartozó sebességfluktuációk szórása. A \(\nu' \) jellegzetes sebesség tehát az \(l \) méret függvénye.

- A viszkozitásból adódó disszipatív csillapítási idő, a Navier–Stokes-egyenlet \(\nu' \Delta \mathbf{v} \) tagjából adódóan minden sebességkomponensre
 \[
 \tau_d = \frac{1}{\nu' k^2} \sim \frac{l^2}{\nu'}
 \]
 (7.55)

A kétfajta jellegzetes idő hányadosa
 \[
 \frac{\tau_d}{\tau_i} = \frac{l \nu'}{\nu},
 \]
 (7.56)

mely nem más, mint az \(l \) méretű örvény Reynolds-száma a \(\nu' \) sebességfluktuációval képezve. A teljes turbulens folyamat \(Re \) Reynolds-számát az energiabetáplálásra jellemző lineáris mérettel definiáljuk, azaz
 \[
 Re \equiv \frac{l_0 \nu_0}{\nu},
 \]
 (7.57)

ahol \(\nu_0 \) az \(l_0 \) hullámhosszhoz tartozó sebességfluktuáció. Mivel ez a Reynolds-szám mindig nagy, sok olyan örvény létezik, melyekre \(\tau_d \gg \tau_i \).

- Az \(l_d \) disszipációs hossz az a távolság, ahol a körülfordulási idő és a disszipációs idő azonosá válik:
 \[
 l_d = \frac{\nu}{\nu'}
 \]
 (7.58)

Az ehhez a távolsághoz tartozó Reynolds-szám egységnyi. Ez a hossz tekinthető a legkisebb örvények méretének. Ezen a skálán igaz, hogy a \(\nu' \Delta \mathbf{v} \) viszkozus gyorsulás összemérhető a \(\nu'^2/l \) nagyságrendű advektív gyorsulással. A viszkozitás tehát csak az \(l_d \) skálán (vagyis a \(k_d \sim 1/l_d \) disszipációs hullámzsámnál) válik lényegessé. Emmel kisebb távolságokon a mozgási energia hővé alakul, az áramlás lamináris, örvények nincsenek jelen.

- A \(L \gg l \gg l_d \) tartomány belsejében ezért létezik az \(l \) örvényméretek egy széles tartománya, melyben az örvények körbefordulási ideje sokkal kisebb a disszipációs időnél, azaz, melyben az örvények gyakorlatilag ideálisoknak, a folyadék pedig sürlődásmentesek tekinthető. Az ilyen örvényekre az Euler-egyenlet örvényes, és ennek megfelelően a rendszer energiája
megmarad. Az adott l méretű örvények energiája ezért egyszerűen átadódik a más méretű örvényekre. Emek jellegzetes ideje is a τ lörülfordulási idő. Ebben a tartományban a mozgási energia különbség merőtő örvényeken, veszteség nélkül folyt át. Ez a jelenség az energiakaszkád, az a hullámszám tartomány pedig, melyben érvényes, az ún. tehetetlenségi tartomány.

A felsorolt tulajdonságok, elsősorban az energiakaszkád jelensége központi fontosságú a turbulencia megértésében. Az $E(k)$ energiaspektrum alakja a dimenzióra jellemző vonások beépítésé után a fentiekből egyszerű megfontolással adódik.

7.7.1 Háromdimenziós turbulencia

A hétköznapi tapasztalat, pl. a csapból gyorsan kömlő víz megfigyelése is azt sugallja, hogy a térbeli turbulens áramlásokban nagy örvények kisebbekre bomlanak (7.10, 7.1 ábra). A pontosabb vizsgálat is alátámasztja, hogy az energia a nagy örvényekből a kisebbek felé áramlik.

![Diagram](Image)

7.10 ábra: A háromdimenziós turbulenciában a nagy örvények egyre kisebbekre esnek szét. A rajtuk átfolyó ε energiafluksz az k_d disszipációs hossznak megfelelő legkisebb örvényméret eléréséig állandó. Az ábra adott előjelű örvényeket mutat, az ellenkező forgásúak természetesen hasonlóan bomlanak.

Ebben az ún. direkt energiakaszkádban az energia a kis hullámszámoktól a nagyok felé halad. Mivel azonban a teljes energia meghalad, az időegység alatt átadott energiának, az ún. energiafluksznak állandónak kell lennie, legalábbis a disszipációs hullámszám $k_d \sim 1/l$ eléréséig. Az összennyomhatatlanság miatt tekinthetők az egységnyi tömegre eső mozgási energia flukszát is, mert az is állandó. Jelölje ε ezt a fajlagos energiaflukszot, melynek mértékegysége m^2/s^3. Ha az energiabetáplálás a k_0 hullámszámon történik, akkor az annál jóval nagyobb hullámszámokra a turbulencia már homogénnek és izotrópnak tekinthető, és az energia meghalad a k_d disszipációs hullámszám eléréséig. A tehetetlenségi tartomány tehát

$$k_0 \ll k \ll k_d.$$ \hspace{1cm} (7.59)

Mivel egy l méretű örvény a sebességfluktuációkból adódó v'^2 energiáját a τ lörübelfordulási idő néhányzorosa alatt adja le, az ε energiafluksz becsíthető mint

$$\varepsilon \sim \frac{v'^2}{l/v'} = \frac{v'^3}{l}$$ \hspace{1cm} (7.60)

A tehetetlenségi tartományban ε állandó, ezért az l méretű örvények sebessége és kiterjedése a

$$v' \sim \varepsilon^{1/3} l^{1/3} \sim (\varepsilon/k)^{1/3}$$ \hspace{1cm} (7.61)

198
kapcsolatban vannak egymással. A disszipációs hosszt definiáló (7.58) összeefüggésbe ezt helyettesítve \(l_d \sim \nu/(\varepsilon l_d)^{1/3} \), s ímét
\[
E(k) \sim \varepsilon^{2/3} k^{-5/3}.
\]
(7.63)

Ez a híres Kolmogorov-spektrum, melyet a mérések is alátámasztanak² (7.11 ábra). Összehasonlításként érdemes megemlíteni, hogy egy termodinamikai egyensúlyban lévő rendszerben (pl. ideális gázban) a k hullámszámhoz tartozó kinetikus energia \(k^2 \)-tel arányos, ezért az \(E(k) \) energiaspektrum a hullámszámának mindenképpen pozitív hatványa. A kapott negatív kitevő azt mutatja, hogy a turbulens áramlás a termikus egyensúlytól igen távol esik.

Az energiaspektrum a betáplálási hullámszám környékén természetesen eltér a fenti hatványalaktól, hiszen ott a turbulencia nem homogén és izotróp. Ugyanígy eltér a \(k_0 \sim 1/l_d \) Komogorov-hullámszámmal nagyobb tartományban, ahol a disszipáció miatt az energiafluxus már nem állandó.

7.11 ábra: A háromdimenziós turbulencia energiaspektruma. \(k_0 \) és \(k_d \sim (\varepsilon/\nu^3)^{1/4} \) az energiabetáplálási és a disszipációs (Kolmogorov-) hullámszám. A \(k^{-5/3} \) hatványviselkedés a \(k_0 \ll k \ll k_d \) tehetszetlenségi tartományban érvényes.

A tehetszetlenségi tartomány hosszát az \(l_0/l_d \) hányados jellemzi. A Reynolds-szám (7.57) értékét és az energiafluxus (7.60) kifejezését használva azt kapjuk, hogy
\[
\frac{l_0}{l_d} \sim Re^{3/4},
\]
(6.4)

²\(-5/3 \)-es értékől alig eltérő kitevővel.
A hossz tehát a Reynolds-szám pozitív hatványával arányos, a tehetséges tartomány tehát a $Re \gg 1$ esetben igen széles (a Reynolds-szám típusú laboratóriumi értéke 10^6, környezeti értéke pedig 10^{12}). A disszipáción kisebb skálán az áramlás egyéb, ahol újabb örvény már nem keletkezik, ezért az ilyen kis távolságon néhány adat is elég a sebességtér jellemzéséhez. Minden örvény meghatározása újabb adatokat igényel. Ezért $(l_0/l_d)^3$-nal arányos a turbulencia leírásához szükséges változók száma. A turbulens viselkedés tehát

$$Re^{0.4}$$

-nel arányos számú közönséges differenciálegyenlettel írható le, s ez a szám a $Re \to \infty$ határesetben végtelehen tart.

Az örvények körülfordulási ideje tekinthető az adott méretű objektumok előrejelzhetőségi idejének is, hiszen néhány körülfordulás után az örvény átadja energiáját és megszűnik. A fentiekből az l hullámhosszhoz tartozó előrejelzési idő

$$\eta \sim \epsilon^{-1/3}t^{2/3}.$$

A nagyobb objektumok hosszabb ideig jelzhetők előre. A léggőri $\epsilon = 10^{-3}$ m2/s3-nel számolva $l = 1$m-re 10 s, az 1 km-es skálán pedig 100 s adódik. A planetáris határértégebli háromdimenziós turbulencia néhány napra pontos előrejelzése tehát reménytelen. A laboratóriumi érték sokkal rövidebb: az 1 m-es skálán 0,1 s.

7.7.2 Kétdimenziós turbulencia

A kétdimenziós áramlásokban fellépő turbulencia alapvetően különbözik a háromdimenziós étől. Ez jól látható pl. a mozgó szappanhatályban megfigyelt mintázatokban is (7.12 ábra). Ugyanakkor az időjárású helyzetet mutató módszerekis kölcsönben a kétdimenziós turbulencia jellegzetességeit mutatják (7.13 ábra).

(a)

(b)

7.12 ábra: Kétdimenziós turbulencia áramló szappanhatályban. a) Nagy örvények. b) Az örvények közötti szálas szerkezet [Tabeling].

Az eltérés egyik fontos oka, hogy kétdimenzióban az \mathbf{u} sűrű sebességvektor $\zeta \equiv \text{rot}_z \mathbf{u}$ örvényessége ideális folyadékban a mozgás során megnarad. Ebből következik, hogy az enzstrő-fünnak nevezett ζ^2 négyzetes örvényesség is megnarad. A új megnaradási tétele miatt a folyadék

számára mintegy kevesebb lehetőség marad, mozgása korlátozottabb. A kétdimenziós turbulencia ezért szelídöbb, mint a háromdimenziós. Ez természetesen nem zárja ki azt, hogy a kétdimenziós turbulencia is erősen véletlenszerű és nemlineáris jelenség.

A teljes ensztrófia megmaradásából következik, hogy a \(\zeta \) örvényességfluktuációkból alkotott \(\overline{\zeta^2} \) mennyiség, azaz a fluktuációkból adódó átlagos ensztrófia is megmarad ideális folyadékban. A mozgási energia spektrumához hasonlóan definiálható egy \(Z(k) \) ensztrófiaspektrum a

\[
\overline{\zeta^2} = \int Z(k)dk
\]

összefüggéssel. Ilyen \(Z(k)\Delta k \) jelenti a \(k \) és \(k + \Delta k \) hullámszámot tartománya eső perturbációk átlagos ensztrófiaját. Mivel az örvényesség a sebesség deriváltját tartalmazza, az ensztrófia és az \(u^2 \) kétdimenziós sebességfluktuációk \(E(k) \) energiaspektruma között fenná

\[
Z(k) = k^2 E(k)
\] (7.68)

kapcsolat.

A két mennyiség együttes megmaradása új helyzetet teremt. Tételezzük fel, hogy a \(k_0 \) hullámszámú betáplált energia két hullámszámú tartományba, a \(k_1 < k_0 \) és a \(k_2 > k_0 \) hullámszámú örvények környékére tevődik át. Meg szeretnénk tudni, hogy melyik örvény energiája és ensztrófiája nagyobb. A megmaradási feltételekből (azonos \(\Delta k \)-kat választva)

\[
E(k_0) = E(k_1) + E(k_2),
\]

\[
Z(k_0) = k_0^2 E(k_0) = k_1^2 E(k_1) + k_2^2 E(k_2) = Z(k_1) + Z(k_2).
\] (7.69)

Ebből

\[
E(k_1) = \frac{k_0^2 - k_0^2}{k_0^2 - k_1^2} E(k_2).
\] (7.70)
Ha például $k_1 = k_0/2$ és $k_2 = 2k_0$, akkor $E(k_1) = 4E(k_2)$ és $Z(k_1) = Z(k_2)/4$. A $k_1 = k_0/n$ és $k_2 = nk_0$ esetben ($n > 1$) $E(k_1) = n^2E(k_2)$ és $Z(k_1) = Z(k_2)/n^2$. Az energia nagy része tehát a kisebb hullámszámok felé, az ensztrófia pedig főleg a nagyobb hullámszámok felé adódik át. A kétdimenziós turbulencia alapvető vonása, hogy az örvények nem kisebbekre szakadnak, az energia ezért nem az egyre kisebb örvények felé halad, hanem az örvények spontán módon összeolvadnak és ezzel a nagy energiaütemű tartományok az egyre nagyobb skálák felé tolódnak. Itt a viszkozitás hatása lenyegesen. Az örvényekben ugyanakkor enyhére a nyírás, a nagy örvények kevés ensztrófia tartalmazik. A nyírás az örvények peremén erős, ahol kevés a mozgási energia, és ezek a tartományok az örvények növekedése miatt egyre kisebbeké válnak, miközben ensztrófiájuk nő. Összefoglalva, a kis örvények nagyobbakká egyesülnek, míg az örvényesség a köztük levő nyírás tartományra szűköl (7.14 ábra). Ezért jellemző a kétdimenziós turbulenciára a nagy örvények és a közöttük levő szálas szerkezetek megjelenése, mely szappanhártya kíséréletekben is jól megfigyelhető (7.12b ábra).

7.14 ábra: A kétdimenziós turbulenciában a kis örvények egyre nagyobbakká olvadnak össze. A rajtuk átfolyó ε energiafluxus állandó. Az ábra adott előjelű örvényeket mutat, az ellenkező forgásúak természetesen hasonlóan egyesülnek.

A kétdimenziós turbulenciában két tehetetlenségi tartomány alakul ki, az energiabetáplálási hullámszám két okolán:

$$1/L \ll k \ll k_0, \quad k_0 \ll k \ll k_d.$$ \hspace{1cm} (7.71)

A kisebb hullámszámokhoz tartozó $E(k)$ spektrum történik az inverz energiakaszkád, melynek során az energiataulat állandó, és az energia most a nagyobb méretek irányába halad. A nagy hullámszámok tartományában az ensztrófia bomlik a nagyobb méretekől a kisebbek irányába, itt egy (direkt) ensztrófiakaszkád figyelhető meg.

Az inverz energiakaszkádhoz tartozó $E(k)$ spektrum ugyanazzal a gondolamennettel határozható meg, mint a háromdimenziós turbulenciában. Ezért (7.63) itt is örvényes, azaz az energiaspektrum kitevője $m = 5/3$, de az inverz energiakaszkád a teljes L lineáris méret és az l_0 energia-betáplálási hossz között figyelhető meg (7.75 ábra).

Az ensztrófiakaszkád során az ensztrófiát átadás állandó, legalábbis a dissipációs hossz előrelátható, ugyanakkor az energiataulat elhanyagolható. Jelölje χ az ensztrófiaturust, azaz az időegység alatt átadott ensztrófiát. Laboratóriumi kíséréletekben $\chi = 0,1-1$ s$^{-3}$, a légkörben pedig $\chi = 10^{-15}$ s$^{-3}$.

Mivel az örvényesség karakterisztikus értéke $u' / l \sim 1/n$, ahol u' a kétdimenziós sebességfluktüsség szórása az l hosszon, és az ensztrófiatartalom a n idő alatt átadódik, írhatjuk, hogy

$$\chi \sim \frac{u'^3}{l^3}.$$ \hspace{1cm} (7.72)

202
7.15 ábra: A kétidzenziós turbulencia energiaspektruma. k_0 és $k_d \sim (\chi/\nu^3)^{1/6}$ az energiabetáplálási, ill. a disszipációs hullámszám. Az energiakaszkád $k^{-5/3}$ hatványviselkedése a $1/L \ll k \ll k_0$, az ensztrófiakaszkádot jellemző k^{-3} alak pedig a $k_0 \ll k \ll k_d$ tehetsélgességi tartományban érvényes.

A tehetsélgességi tartományban χ állandó, ezért az ensztrófiakaszkádban

$$u' \sim \chi^{1/3}l \sim \chi^{1/3}k^{-1},$$ \hspace{1cm} (7.73)

azaz a sebesség egészen másképpen függ a mérettől, mint az energiakaszkádban. Az energiaspektrum most is u'^2/k nagyságrendű, melyből

$$E(k) \sim \chi^{2/3}k^{-3}.$$ \hspace{1cm} (7.74)

Érdemes hangsúlyozni, hogy mindkét tehetsélgességi tartomány csak akkor létezik, ha az energiabetáplálás $l_0 \sim 1/k_0$ lineáris mérete jóval kisebb a teljes L hossznál, és ugyanakkor sokkal nagyobb az l_d disszipációs hossznál. Attól függően, hogy l_0 értéke mekkora, az egyik vagy másik spektrum elnyomódhat. Ha például l_0 közé esik a teljes L mérethez, akkor az inverz kaszkád nem alakul ki.

A (7.58) disszipációs hosszra most (7.61) alapján $l_d \sim \nu/\chi^{1/3}l_0$, s ebből

$$l_d \sim \left(\frac{\nu^3}{\chi} \right)^{1/6}.$$ \hspace{1cm} (7.75)

Az atmoszférában a disszipációs hossz $1 - 10$ m-nek adódik, a laboratóriumban pedig 1 mm-nek.

Mivel az ensztrófiainluxus a betáplálási skála adataival a $\chi \sim u_0^3/\nu$ összefüggésben van, az ensztrófiakaszkád tehetsélgességi tartományának hossza

$$\frac{l_0}{l_d} \sim Re^{1/2}.$$ \hspace{1cm} (7.76)

A turbulenciában résztvevő szabadági folyók száma $(l_0/l_d)^2$-vel becsülve

$$\sim Re.$$ \hspace{1cm} (7.77)
Az enyhébb Reynolds-szám függés is arra utal, hogy a kétdimenziós turbulencia szélidebb, mint a háromdimenziós.

A fentiekből az l hullámszámhoz tartozó előrejelzési idő

$$\tau \sim \chi^{-1/3}, \quad (7.78)$$

mely most független az objektumok hosszától. A laboratóriumi előrejelzési idő 1 s körüli. A légkörösi ensztrófiaindító értékét félhasználva néhány napos előrejelzési idő adódik, összehangban a meteorológiai gyakorlat. A kétdimenziós turbulencia tehát jobban megjósolható, mint a háromdimenziós, és éppen ez a tulajdonos teszi lehetővé a (néhány napra) síkerekes időjáráslátolást.

7.7.3 Geosztrofikus turbulencia

A nagysejlájú környezeti áramlásokat a sekélyfolyadék egyenletek (ill. az ebből következő kvázigeosztrofikus egyenlet) jól közelítéssel leírják. Ezekben előfordul ugyan gyenge fel- vagy leáramlás, a dinamika mégis a kétdimenziós viselkedéssel rokon, mert $q = H(\zeta + f)/h$ potenciális örvényesség megmaradó mennyiség. Turbulens esetben ennek q^2 fluktuációkból képzethető a q^2 potenciális ensztrófia, ill. ennek $Z(k)$ spektruma. A második megmaradó mennyiség jelenlété ugyanazt a meglátást jelenti, mint a kétdimenziós turbulencia esetén. Ezért a környezeti, geosztrofikus turbulenciában is kettős kaszkád lehet jelen: egy inverz energiakaszkád és egy direkt potenciális ensztrófiakaszkád. A megfelelő spektrumok alakjai is ugyanazok: az elsőben $m = 5/3$ az exponens, a másodikban $m = 3$ (7.16 ábra).

![Geosztrofikus turbulencia energiaspektruma](image-url)

7.16 ábra: A geosztrofikus turbulencia energiaspektruma. $k_0 \approx 1/R'$ és $k_d \sim (\chi/\nu^3)^{1/6}$ a baroklin instabilitás energiabetáplálási hullámszáma, ill. a disszipációs hullámszámt. Az energiakaszkád $k^{-5/3}$ hatványviselkedése az $1/L_R \ll k \ll 1/R'$ (L_R a Rhines-hossz), az ensztrófiakaszkád alakjai pedig a $1/R' \ll k \ll k_d$ tehetséges tartományban érvényes.

A természetben a geosztrofikus turbulenciát a baroklin instabilitás gerjeszti. Mivel annak jellegzetes hullámszálja az R' belső Rossby sugár, az energiabeviteli távolsága a legtöbb $l_0 \sim R'$, vagyis a hullámszám $k_0 \sim 1/R'$. Az ennek kisebb távolságoz az ensztrófiakaszkád zajlik, a nagyobb távolságoz viszont az örvények egyre nagyobbakká történő összehangolása figyelhető meg.

A görbület, a β-hatás miatt azonban a növekvő örvények nem növekedhetnek a bolygó sugárának eléréséig, hanem a szélességi körök mentén megnyúlnak, és egy kritikus méret elérése után
nagy amplitudójú nemlineáris Rossby-hullámokba mennek át. Ez a méret az

\[
L_R \equiv \sqrt{\frac{u'}{|\beta|}} \tag{7.79}
\]

Rhines-féle skála (1975), ahol \(u' \equiv \sqrt{u^n} \) a kötdimenziós sebesség szórása\(^3\).

Az \(l \) méretű örvény \(k \sim 1/l \) hullámszámával kialakuló, \(|a_0| = \beta/k \) frekvenciájú \(x\)-irányban haladó, zárt felszínű Rossby-hullám (l. (3.35)) periódusideje \(T \sim 1/(l\beta) \). Amennyiben ez sokkal nagyobb az örvény \(\eta \sim l/u' \) élettartamánál, akkor nincs idő Rossby-hullámok keltésére. Ha viszont \(T < \eta \), akkor a nagy turbulens örvényekből Rossby-hullámok válnak le. Ennek feltétele \(l > L_R \). A Rhines-skála az a legkisebb hullámhossz, mellyel Rossby-hullámok megjelenhetnek. A turbulens energia tehát az \(L_R\)-nél nagyobb skálán hullámkeltésre fordítódik, azaz ott az energia kicsatolódik a turbulenciából. Az inverz kaszkad tehát az \(1/L_R \) hullámszámával megszűnik.

A geosztrófikus turbulencia az egészben nagy skálán a szélességi körök mentén elnyúló hullámzónák, jelek jellemzők, melyek vizsgintes kiterjedése \(L_R \) (7.17 ábra). Ezzel a tulajdonsággal összhangban vannak az örriásbolygók, a Jupiter vagy a Szaturnusz atmoszférájának felső, néhány szor 10 km vastag gáznak becsült aktív felső rétegében megfigyelhető zonális jelek. A Jupiter esetében közepes szélességeken a \(\beta\)-paraméter \(\beta = 20/\lambda \sin (\pi/4) /R_F = 2 \cdot 10^{-12} \) \(1/(\text{ms}) \). A \(u' = 100 \) m/s átlagos sebességszórással \(L_{R,J} = 7000 \) km.

Ugyanakkor az örvények egyesülési és növekedési tendenciája a Nagy Vörös Folt (7.17 ábra) magyarázata alul is szolgálhat: az úgy tekinthető, mint az összeolvadt örvények végállapotára (melyből még éppen nem keletkezett Rossby-hullám). Az örriásbolygók atmoszférája tehát a mindkét kaszkádot tartalmazó geosztrófikus turbulencia természetben előforduló példái.

A földi viszonyok között a Rhines-skála a légköriben 1000, az óceánban pedig 100 km nagysággrendű \((u' = 10 \) ill. \(0,1 \) m/s és \(\beta = 10^{-11} \text{ m}^{-1}\text{s}^{-1} \)). A belső Rossby-sugár és dimenzióiban számok segítségével a Rhines-skála a következőképpen fejezhető ki:

\[
L_R = R \sqrt{\frac{Fr'^2}{RoBe}}, \tag{7.80}
\]

\(^3\) Az \(u'\) helyett a \(U\) átlagsebességgel képzett hasonló távolság fellép és már a zonális áramlásokban kialakuló struktúrák jellemző méreteként (l. 3.7, 3.10, 10.1 fejezet)
ahol Fr' az u'-vel képzett belső Froude-szám, Ro a Rossby-szám, Be pedig a dimenziótlan β paraméter. Mivel a Földön $Fr' \sim Ro \sim Be$, a Rhodes-féle hossz óhatatlanul a belső Rossby-sugár nagyságrendjébe esik. Ezért az inverz kaszkád nem tud kifejlődni. A légkörben a belső Rossby-sugár amúgyis összemmérhető a Föld sugarával, ráadásul a domborzati viszonyok is erős perturbációs szerepet játszanak, így az óriásbolygókra jellemző zonális áramlások nem figyelhetők meg. A földi körülmények között a geosztrofikus turbulenciát az ensztrófiakaszkád dominálja. A nagy örvények, ciklonok, anticiklonok, óceáni gyűrűk a belső Rossby-sugár gerjesztési skáláján kialakulnak, de összeolvadásukra helyhiány vagy a peremfeltételek miatt a Földön nincs mód.

A geosztrofikus turbulencia (a turbulencia többi fajtájával együtt) ma is igen aktívan kutatott terület. Számos kérdés vár még tisztázásra, mint például a belső hullámokkal és azok megtörésével való kapcsolat, vagy a domborzati egyenlenségek hatása.
II. rész

Kiegészítő olvasmányok
8. fejezet
Forgatott homogén közegek áramlása

8.1 Az örvényvektor egyenlete

A forgatott folyadék Navier-Stokes-egyenlete alapján érdemes levezetnünk az \(\vec{\omega} \equiv \text{rot}\, \vec{v} \) örvényvektor időfejlődésére vonatkozó, hiszen abban a nyomás és a külső erő nem jelenik már meg. A \((\text{grad}\vec{v})\equiv \text{grad} \frac{v^2}{2} + \text{rot}\vec{v} \times \vec{v}\) azonosság felhasználásával az (1.23) egyenlet a

\[
\frac{\partial \vec{v}}{\partial t} = - (\vec{\omega} + 2\Omega) \times \vec{v} - \text{grad} \left(\frac{v^2}{2} + \frac{p}{\rho_0} + gz \right) + \nu \Delta \vec{v}
\]

(8.1)
alakot ölti. Az egyenlet rotációját véve:

\[
\frac{\partial \omega}{\partial t} + \text{rot} [(\omega + 2\Omega) \times \vec{v}] = \nu \Delta \omega.
\]

(8.2)

Mivel a forgatás \(\Omega \) frekvenciája időben állandó, az idő-, és térbeli deriválások az örvényvektorhoz hozzáadhatjuk \(2\Omega \)-t. Ezért érdemes bevezetni az \(\omega_T \) teljes örvényességet (melyet néha abszolút örvényességnek is hívunk), mint az \(\omega \) relatív örvényesség és a \(2\Omega \) Coriolis-paraméter összegét:

\[
\omega_T \equiv \omega + 2\Omega.
\]

(8.3)

Az örvényességi egyenlet a teljes örvényességre vonatkozó formában jelenik meg:

\[
\frac{\partial \omega_T}{\partial t} + \text{rot} [\omega_T \times \vec{v}] = \nu \Delta \omega_T.
\]

(8.4)

Ennek fontos következménye, hogy \(\omega_T \)-re minden érvényes, ami a laboratóriumi hidrodinamikában az ottani teljes örvényességre, \(\omega \)-ra érvényes volt.

Furcsának tűnhet, hogy \(\omega \)-hoz a forgatási szögsebesség későseire adódik hozzá. Ennek oka az, hogy \(\text{rot}\, \vec{v} \) szemléletes jelentése a folyadékkal merev testként együtt forgó test szögsebességének a kétszerese. (Ha \(1/2 \text{rot}\, \vec{v} \)-t tekintenénk örvényességnek, akkor ahhoz csak \(\Omega \) adódna hozzá.)

Az \(\text{rot}(\mathbf{a} \times \mathbf{b}) = (\text{grad})\mathbf{a} - (\text{grad})\mathbf{b} + \mathbf{a} \text{div}\mathbf{b} - \mathbf{b} \text{div}\mathbf{a} \) azonosságot és az összenyomhatatlanságot felhasználva:

\[
\frac{d\omega_T}{dt} = (\omega_T \text{grad})\vec{v} + \nu \Delta \omega_T.
\]

(8.5)

Ebből a relatív örvényvektorra:

\[
\frac{d\omega}{dt} = (\text{grad})\vec{v} + 2(\Omega \text{grad})\vec{v} + \nu \Delta \omega.
\]

(8.6)
Az (1.30) dimenziótlanítás után:

\[Ro \frac{d\omega}{dt} = Ro(\omega \text{grad}) \mathbf{v} + 2(\text{grad}) \mathbf{v} + \frac{Ro}{Re} \Delta \omega. \]

(8.7)

A gyors forgatásnak megfelelő \(Ro \ll 1 \) határesetből egységesnyi hidrodinamikai gyorsulásokat feltételezve \((\text{grad}) \mathbf{v} = 0\) adódk, mely szerint \(\partial \omega / \partial z = 0 \). Az (1.48) Taylor–Proudman-tétel tehát következik az örvényvektor dinamikájából is.

A (8.5) alakból leolvasható, hogy ideális folyadékból történő kétdimenziós áramlásban az \(\omega_T \) teljes örvényesség megmaradó mennyiség. Ha ugyanis a sebességvektor az \((x,y)\) síkban fekszik, akkor az örvényvektor \(z \) irányú, éppúgy mint a forgatás szögsebessége. Ezért az (\(\omega_T \) grad) operáció \(z \) szerinti deriváltat tartalmaz, de ha a sebesség nem függ \(z \)-től, akkor ez zérust eredményez. A teljes örvényvektor \(\zeta_T \) függőleges komponensezre ezért

\[\frac{d\zeta_T}{dt} = \nu \Delta \zeta_T. \]

(8.8)

Kétdimenziós súrlódásmentes áramlásban tehát a teljes örvényvektor \(\zeta_T \) függőleges komponense állandó:

\[\zeta_T \equiv \zeta + 2\Omega = \text{konst}. \]

(8.9)

Ez azt jelenti, hogy ha együtt mozgunk a folyadékcsiszolként, akkor \(\zeta_T \) időtől függetlenek találjuk. A (2.21) potenciális örvényesség megmaradása ennek a tulajdonságainak a kiterjesztése sékely, s ezért közül kétdimenziós folyadékra.

Végül megadjuk a (8.8) örvényegyenlet kifejezését az áramlás függvényre:

\[\left[\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right] \Delta \psi = \nu \Delta^2 \psi. \]

(8.10)

Itt főhasználtuk, hogy minden síkbeli összenyomhatatlan áramlásra tartozik egy (1.52) áramlás függvény, melyből az örvényesség a \(\zeta = \Delta \psi \) összefüggés alapján kapható meg. A (2.49) kváziigeosztrófikus egyenlet a kétdimenziós örvényegyenlet általánosítása.

8.2 A cirkuláció változása

A hagyományos hidrodinamikában az (8.4), (8.5) típusú egyenletből következik a cirkuláció megmaradása elhanyagolható viszkozitás esetén. Most figyelembevevőkik, hogy nem \(\omega \), hanem az \(\omega_T \) teljes örvényesség marad meg. Az \(\omega_T \)-hez tartozó teljes \(\Gamma_T \) cirkulációt úgy kapjuk mint \(\omega_T \) felületi integrálját. Az viszont kifejezhető a sebesség zárt görbés vett integráljával, a \(\Gamma \) relatív cirkulációval is:

\[\Gamma_T \equiv \int_C \omega_T dA = \int_A \omega dA + 2\Omega A = \int_C \omega dA + 2\Omega A \equiv \Gamma + 2\Omega A. \]

(8.11)

Itt \(A \) egy tetszőleges (egyszeresen összefüggő) tartomány a folyadékban, \(C \) az \(A \) perem-görbje, \(A \) pedig a tartomány \(\Omega \)-ra merőleges síkra eső vetületének területe. Egy forgatott ideális folyadékban a \(\Gamma_T \) teljes cirkuláció állandó:

\[\frac{d\Gamma_T}{dt} = \frac{d\Gamma}{dt} + 2\Omega \frac{dA}{dt} = 0. \]

(8.12)

Ez a szokásos cirkulációtétel általánosítása forgatott közegre. Egyen azt is megadja, hogy mennyire változik a relatív cirkuláció. Ennek mértéke arányos a forgatás erősségével és az \(A \)
terület időbeli változásával:

\[
\frac{d\Gamma}{dt} = -2\Omega \frac{dA}{dt}.
\] (8.13)

Ez Bjerknes tétele homogén folyadékra (V. Bjerknes (1862–1951), norvég meteorológus, a meteorológia tudományának egyik megalapítója). Ha a vizsgált kontúr úgy mozog, hogy merőleges vetületének területe csökken, akkor pozitív forgatási irány esetén a \(\Gamma \) cirkuláció nő, és fordítva, összhangban az 1.3 ábra kvalitatív képével. A (8.13) cirkulációtétel tehát a Coriolis-hatás egyik hidrodinamikai következménye.
9. fejezet

A sekélység hatása

9.1 Kvázigosztrófikus dinamika a sekélyfolyadék egyenletekből

A szabad felszínű sekély folyadék (2.11)-(2.13) egyenletei írhatók, mint

\[
\frac{du}{dt} = +2\Omega v - g \frac{\partial \eta}{\partial x},
\]

\[
\frac{dv}{dt} = -2\Omega u - g \frac{\partial \eta}{\partial y},
\]

\[
\frac{d}{dt}(\eta - d) = -H \text{div} \mathbf{u} - (\eta - d) \text{div} \mathbf{u}.
\]

A lapos aljzathoz, \(d = 0 \)-höz tartozó geosztrófikus egyensúlyban a bal oldalak eltűnnek, stacionárius áramlás alakul ki. Feltevésünk szerint \(d \) és \(\eta \) Rossby-szám rendű, s jelenlétükben lassú időfüggő viselkedés figyelhető meg, melyhez \(Ro \) rendű sebességdivergencia tartozik. Ezért az \((\eta - d) \text{div} \mathbf{u} \) tag másodrendű kicsi és elhanyagolható. Mivel a sebességek időderiváltjai is kicsik, használatuk bennük az \(u \) és \(\eta \) közötti (2.24) kapcsolatot. Így az első két egyenlet átrendezésével

\[
u = -\frac{g}{2\Omega} \frac{\partial \eta}{\partial y} - \frac{g}{(2\Omega)^2} \frac{d}{dt} \frac{\partial \eta}{\partial x},
\]

\[
v = \frac{g}{2\Omega} \frac{\partial \eta}{\partial x} - \frac{g}{(2\Omega)^2} \frac{d}{dt} \frac{\partial \eta}{\partial y}.
\]

Ez a sebesség első, nemgeosztrófikus korrekción is tartalmazó kifejezése, mellyel

\[
\text{div} \mathbf{u} = \frac{g}{(2\Omega)^2} \frac{d}{dt} \Delta \eta.
\]

A mélység (9.3) egyenletébe helyettesítve

\[
\frac{d}{dt}(\eta - d - R^2 \Delta \eta) = 0.
\]

A zárójelben álló kifejezés a Rossby-számmal arányos, ezért használhatjuk a geosztrófikus határészben érvényes \(\eta = (2\Omega/g)\psi \) kapcsolatot (l. (2.25)), mellyel

\[
\frac{d}{dt}(R^{-2} \psi - \Delta \psi - \frac{2\Omega}{H} d) = 0.
\]

A teljes időderiváltban szereplő \(u, v \) tényezőket az áramlást függvényében kifejezve, a (2.49) kvázigosztrófikus egyenletekhez jutunk. Ez tehát a potenciális örvényesség megmaradásának közvetlen felhasználása nélkül is következik a sekélyfolyadék egyenletekből. A gyorsan forgatott határészben a teljes egyenletrenszer és a megmaradási tétel ugyanarra a skálár egyenletre vezet.
9.2 Hullámok döntött aljzatú sekély folyadékból

Megvizsgáljuk, milyen lineáris hullámok alakulhatnak ki sekély forgatott folyadékból, ha annak aljzata egyenletes lejtés az y irányban: $h = \eta + H - \gamma y$ és a γ döltsszög kicsi. A (2.13) kontinuitási egyenlet a másodrendűen kicsi η, ν tagok elhanyagolása után

$$\frac{\partial \eta}{\partial t} = - \frac{\partial (H - \gamma y)u}{\partial x} - \frac{\partial (H - \gamma y)v}{\partial y} = -(H - \gamma y) \frac{\partial u}{\partial x} + \gamma v - (H - \gamma y) \frac{\partial v}{\partial y}. \quad (9.9)$$

Mivel γ kicsi, a γy elhanyagolható H mellett, s így a

$$\frac{\partial \eta}{\partial t} = -H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \gamma v \quad (9.10)$$

lineáris egyenletéhez jutunk. A vízszintes sebességkomponensek vontakozó egyenletek nem függnek a mélységtől, ezért (2.52), (2.53) továbbra is érvényesek. Az $(u, \eta) = (u_0, \eta_0, \nu_0)$ exp $(i\omega \theta - ik_x x - ik_y y)$ alakot behelyettesítve ismét (2.55), (2.66)-et kapjuk, de a harmadik egyenlet

$$i \omega \eta_0 = H(i k_x u_0 + i k_y v_0) + \gamma v_0 \quad (9.11)$$

lesz. Nemtriviális megoldás akkor létezik, ha ω_0-ra fenn áll a

$$-\omega_0^2 + (2\Omega)^2 + gHk^2 + \gamma g 2\Omega \frac{\omega_0}{\omega_0} k_x = 0 \quad (9.12)$$

összefüggés. Ez egy harmadfokú egyenlet, ezért a folyadékból három különböző hullám létezhet. Érdemes a hullámfrekvenciát $2|\Omega|$ egységeiben méni. A dimenzióttal frekvencia (melynek nagysága a hullám Rossby-száma) kielégíti a

$$-\omega_0^2 + 1 + \left(\frac{R}{L} \right)^2 k^2 = -Be \left(\frac{R}{L} \right)^2 \frac{k_x}{\omega_0} \quad (9.13)$$

eyenletet, ahol R a (2.46) Rossby-sugár, Be a (3.18) topografikus paraméter, és k az $1/L$ egységekben mért dimenzióttal hullámszámmal. A megoldás legegyszerűbb a jobb és a bal oldal grafikus ábrázolásával szemléltethető.

9.1 ábra: Hullámok nem nagyon gyorsan forgatott lejtős aljzatú sekély folyadékból; a (9.13) egyenlet grafikus megoldása. A parabola a bal oldal, a hiperbola a jobb oldal ω_0-függését mutatja rögzített k, k_x mellett. A metszéspontok adják a lehetséges diszperziós relációkat.
Lejtős aljzat, azaz $Be \neq 0$ esetén nem kapjuk vissza a tehetsélességi-gravitációs hullámok (2.59) diszperziós relációját, mert γ értéke módosítja azt. Enyhe meredekseg, $Be \ll 1$ esetén azonban nagyságrendi szétválas figyelhető meg a megoldásokban. Ilyenkor ugyanis létezik megoldás egységnyi nagyságrendű ω_0-lal, s ekkor a jobb oldal kicsi. Az ω_0 tengelyhez közeli két metszéspont közel van a parabola tengelymetszeteihez, melyek (2.59)-nak felelnek meg. Ugyanis az esetekhez tartozik egy 1-nél sokkal kisebb ω_0 is, mely Be rendű, ugyhogy a bal oldalon ω_0^3 csak kis korrektőket jelent. Ez a megoldás közel esik a Rossby-hullámok (2.45) diszperziós relációnához. Nagyobb meredekseg esetén a lejtős aljzat által módosított tehetsélességi-gravitációs hullámokat, ill. a tehetsélességi mozgás által perturbált Rossby-hullámokat kapunk. Túl nagy meredekseg mellett viszont, amikor $Be \approx 1$ ez a megkülönböztetés már nem értelmes: még a leghosszabb periódusidejű megoldást sem lehet Rossby-hullámoknak tekinteni, mert dimenzióltlan frekvenciája egységnyi.

9.3 Szolitonok és a KdV-egyenlet

A szolitonokat az ún. Korteweg-de Vries-egyenlet, röviden a KdV-egyenlet írja le (melyet D. J. Korteweg és G. de Vries 1895-ben vezetett le). Ez az $\eta(x,t)$ felszíni alak dinamikáját adja meg a

$$\frac{\partial \eta}{\partial t} \pm \left[c_0 \frac{\partial \eta}{\partial x} + \frac{3c_0}{2H} \frac{\partial^2 \eta}{\partial x^2} + \frac{c_0 H^2}{6} \frac{\partial^3 \eta}{\partial x^3} \right] = 0$$ (9.14)

formában, ahol a felső előjel a jobbra haladó hullámban tartozik, és $c_0 = \sqrt{\frac{3}{2H}}$ a lineáris hullámok (2.60) terjedési sebessége. A sebességeloszlás vezető rendben az

$$u(x,t) = \pm \frac{g}{c_0} \eta(x,t)$$ (9.15)

összefüggésből kapható.

Tekintsük először a KdV-egyenlet lineáris változatát, melyben a harmadik tagot elhagyjuk. Az $\eta = \eta_0 \exp(ikx)$ helyettesítéssel az

$$\omega_0 = \pm c_0 k_x \left(1 - \frac{1}{6} (k_x H)^2 \right)$$ (9.16)

diszperziós relációnak kapjuk. Ez eltér a nem forgatott sekély folyadékra jellemző $\omega_0 = \pm c_0 k_x$ eredménytől. A zárójelben megjelenő termének hatása, hogy a KdV-egyenletben az ε mélységi arányban (melynek a legtöbbször $\varepsilon = k_x H$ fedezett) nemcsak vezető rendig megyünk el, hanem megtartjuk az első lényeges korrekciót is. Mivel az eljárás részletes bemutatása hosszabb terjedelmet igényelne, a KdV-egyenlet levezetését nem adjuk meg, csak eredményként értelmezzük, s tulajdonságait tárgyaljuk. A KdV-egyenlet lineáris hullámait tehát diszperziók, melyekben egy kezdeti hullámcsomag szétfolyik, ahogyan az 1.17 ábra mutatja.

A KdV-egyenlet nemlineáris (harmadik) tagja az advektív gyorsulás (ugraduális) következménye és azért jelenik meg, mert véges amplitudójú hullámokat tanulmányozunk, melyekben a sebesség, ill. a felületi alakváltozás nem infinitesimálisan kicsi. Tekintsük meg a KdV-egyenletet a diszperziót okozó utolsó tag nélkül. A

$$\frac{\partial \eta}{\partial t} \pm \left[c_0 \frac{\partial \eta}{\partial x} + \frac{3c_0}{2H} \frac{\partial^2 \eta}{\partial x^2} \right] = 0$$ (9.17)

egyenlet rendelkezik azzal az érdekes tulajdonsággal, hogy az

$$\eta(x,t) = F \left(x \mp c_0 (1 + \frac{3\eta}{2H}) t \right)$$ (9.18)

215
kifejezés bármilyen $F(x)$ függvényalakkal megoldása. Ez a nemlineáris egyenlet hullámörestitirile, ugyanis a nagyobb amplitúdójú hullámok gyorsabban mozognak, s ezért egy kezdeti kidudorodás a haladás irányában való féltorlódáshoz, s azután átcsapáshoz vezet, ahogy a sekély partra kifutó vízehullámokon is megfigyelhető (9.2 ábra).

9.2 ábra: A hullámörestit mecanizmusa: a kezdeti egyszerű felületi kidudorodás aszimetrikussá válik, s a hullámmaximum egy idő után megelőzi a hullám elejét. Ez az instabil állapot a hullám megtörését eredményezi. Az ábra három egymást követő időpontbeli állapotot mutat.

A teljes KdV-egyenletben mind a diszperziót, mind a nemlinearitást kifejező tag jelen van. A végés h_0 hullámmáximum miatt a nemlinearitásból adódó kompaktságra törekvés és a diszperzió miatti szétfolyási tendencia egymással verseng, s végeredményben közel kiegyensúlyozza egymást: a nemlineáris tagban szereplő η/H dimenziótlan amplitudó ugyanolyan (ε^2) rendű, mint a diszperzió korrekció. A szolitonok létezése tehát annak tulajdonítható, hogy enyhén diszperzió közegben a gyenge nemlinearitás éppen kompenzálhatja a diszperzió hatását. A KdV-egyenlet ezt az egyensúlyt fejezi ki.

A (9.14) egyenlet jobbra haladó szolitonmegoldása

$$\eta(x,t) = \frac{\eta_0}{\cosh^2[(x - ct)/l]}$$

alakú, ahol (2.66) és (2.67) a szoliton sebessége és felszélessége. A balra haladó szolitonhullámban $\pm ct$ helyett ct áll.

Az alábbiakban összefoglaljuk a KdV-egyenlet megoldásainak további fontos tulajdonságait.

(A) Két szoliton találkozásakor átfed, kölcsönhat, s egy bonyolult kétszoliton alakot vesz fel (mely szintén egzakt megoldása a KdV-egyenletnek). Végés idő után azonban különbözik, s mint az elegendően eltávolodtak, visszanyerik eredeti alakjukat, s ezért sebességi hatással is. A kölcsönhatás egyedüli maradványa egy fázisállás: a nagyobb szoliton kissé előre, a kisebb kissé hátra tolódik ahhoz képest, ahol kölcsönhatás nélkül lettek volna. (9.3 ábra). A fázisállás jól látszik akkor is, ha az (x, y) síkon mozgó kétdimenziós szolitonok találkoznak\(^1\). Az átfedő részen jól megfigyelhető a fázisállás (1. 224 ábra).

(B) Elegendően lokalizált kezdő felszíni kikudorodásból mindig kialakul legalább egy szoliton. Magasabb kikudorodás esetén több, de mindig véges számú szoliton jön létre, melyek mind különbözőek. Az eltérő sebességek miatt a több szolitonból álló vonalak további nagyság szerint rendeződnek, a legnagyobb vezeti a sort. Ekkor már mindegyik alakja (9.19) típusú, s a maximumok burkolója egy egyenes metén felszik. A szolitonvonlatot rendszerint egy kis amplitudójú hullámvonalat követi. Mivel ennek diszperziós relációja (9.16), csak a leghosszabb (k\(_x\) \approx 0) hullám halad \(c_0\) sebességgel, a többiek ennél is lassabban. A lineáris hullámvonalat tehát egyre jobban lemarad (9.4 ábra).

![Diagram](attachment:diagram.png)

9.4 ábra: Általános kezdő felszínű behorvadás (\(\eta(x,0) < 0\)) esetén szolitonok nem keletkeznek. Negatív szoliton tehát nem létezik. Ekkor csak a kis amplitudójú lineáris hullámvonalat alakul ki (annak amplitudója időben csökken), mely a \(c_0\) sebességnél nem haladhat gyorsabban (9.5 ábra).

![Diagram](attachment:diagram2.png)

9.5 ábra: Általános kezdő behorvadásból kialakuló hullámvonalat. Szolontot nem tartalmazhat, csak kis amplitudójú, szétfolyó hullámok jelennek meg.

A (B), (C) tulajdonságok megértethetők abból az érdekes kapcsolattal ből, mely a KdV-egyenlet által lért nemlineáris folyamat és a kezdő \(\eta(x,0)\) felület alak által definiált kvantummechanikai

\(^1\)A szolitonok szívesen megjósolhatók a \(\frac{\partial}{\partial x}(\frac{\partial^2 \eta}{\partial t^2} + 6f \frac{\partial \eta}{\partial x} + \frac{\partial^3 \eta}{\partial x^3}) + \frac{\partial^2 \eta}{\partial y^2} = 0\) Kadomcev–Peterjai-szolitont ábrázolja.
szórásprobléma köztött fennáll. A szolitokon paraméterei leolvashatók a $-\eta(x,0)$ görbe, mint potenciálvölgy kötött állapotainak ismeretében, míg a kis amplitudójú hullámok a szabad állapotoknak felelnek meg. Ennek pontos megszolgálásához érdemes áttérni az

$$f(r, \tau) = \frac{3}{2H}\eta(x, t)$$ \hspace{1cm} (9.20)

új dimenzióltan felszíni formára, ahol

$$r \equiv \frac{x - c_0t}{H}, \quad \tau \equiv \frac{c_0t}{6H}$$ \hspace{1cm} (9.21)

a c_0 sebességgel mozgó koordinátarendszerebeli dimenzióltan távolság, ill. a dimenzióltan idő. (A 3/2 és 6-os faktorok használatát csak az eredmény áttekinthetőbb alakja indokolja). Így a

$$\frac{\partial f}{\partial t} + 6f \frac{\partial f}{\partial x} + \frac{\partial^3 f}{\partial x^3} = 0$$ \hspace{1cm} (9.22)

dimenzióltan KdV-egyenletre jutunk. Az ún. inverz szórás transzformáció segítségével megmutatható, hogy az $f(r, 0)$ kezdeti alakhoz tartozó szolitok számát és adatait a

$$- \frac{d^2 \Psi(r)}{dr^2} - f(r, 0) \Psi(r) = \lambda \Psi(r)$$ \hspace{1cm} (9.23)

egyenlet kötött állapotai határozzák meg. Ez a $-f(r, 0)$ potenciálvölgyben mozgó részecske dimenzióltan Schrödinger-egyenlete, melynek sajátenergiaja λ. A kötött állapotokhoz negatív sajátértékek tartoznak (l. 9.6 ábra)2.

9.6 ábra: A kezdeti felszín alak (bal oldal) és a kvantummechanikai sajátértéke probléma (jobb oldal) kapcsolata. A kezdeti felszínalak ellentettjének megfelelő potenciálgödödő kötött állapotainak sajátenergiái határozzák meg a szolitok adatait (pl. a λ_1, λ_2, ... dimenzióltan amplitudókat).

A kialakuló szolitok N száma azonos a kötött állapotok számával. Az n-edik kötött állapot λ_n sajátértékevel az n-edik szoliton alakja az

$$f_n(r, \tau) = \frac{2|\lambda_n|}{ch^2 \left(\sqrt{|\lambda_n|}(r - 4|\lambda_n|\tau - r_n)\right)},$$ \hspace{1cm} (9.24)

$n = 1, \ldots N$, dimenzióltan alakban adható meg. Itt r_n a szoliton fázisa. A sajátenergia az amplitudótól, a sebességtől és a szélességtől is meghatározva. Szoliton tehát csak olyan kezdőfeltételekhez

2A $V(x)$ potenciálban mozgó m tömegű részecske E energiához tartozó sajátértékeken forról a fenti alakot az $r = x/H$ dimenzióltan távolság és a $\hbar^2/(2mH^2)$ egységekben mért energiák $(- f(r, 0) = 2mH^2V(rH)/\hbar^2$ és $\lambda = 2mH^2E/\hbar^2$ használatával kapjuk.

218
tartozhat, melyeknek potenciális föld felel meg, mert potenciálhely esetén nem létezik kötött állapot.

A dimenziós alakra áttérve azt kapjuk, hogy amikor a szolitonok már jól elkülönülnek, akkor alakjuk

\[\eta_n(x,t) = \frac{4|\lambda_n|H}{3\hbar^2 \left(\sqrt{|\lambda_n|/H^2} (x - c_n t - r_n H) \right)} \]

Az \(n \)-edik szoliton tehát

\[c_n = c_0 \left(1 + \frac{2}{3} |\lambda_n| \right) \]

sebességgel halad. Mivel ez arányos az amplitudóval, a szolitonok burkolója minden pillanatban egyenes.

Laboratóriumi körülmények között szoliton gyakran egy hosszú kád végében keltenek egy, az átlagos vízszintmel magasabb a töltött rész falának kihúzásával. (Az eddigiekből világos, hogy egy alacsonyabb vízszintű zsír megnyitásával szoliton nem keletkezik.) A kezdeti felszín alak ilyenkor jó közelítéssel vízszintes, ezért a kezdőfeltétel egy derékszögű potenciálisföld definiál. Mivel az elmélet nagy kiterjedésű közegekre vonatkozik, ki kell használnunk, hogy a kád függőleges fala szimmetriatengely. Ezért, ha a zsír vízszintes mérete \(b \), akkor a földür szélességébet dimenziótlan egységben \(2b/H \)-nak kell tekinteni, s ha a szintemelkedés \(h_0 \), akkor a potenciális földur mélységet \(h_0/2 \)-vel kell meghatározni. A kvantummechanikából ismert, hogy a \(b/H \) felületválaszt \(-u_0 \) dimenziótlan mélységű gödörben 3 a kötött állapotok száma \(\sqrt{2 \mu 2b/(\pi H)} + 1 \), ahol a szögletes zárjel az egészreszt jelöli. A \(h_0 \) szintemelkedésű \(b \) szélességű zsír kinyitásakor tehát \(H \) mélységi folyadékban

\[N = \left[\sqrt{\frac{h_0}{H}} \frac{b}{\pi H} \right] + 1 \]

szoliton keletkezik.

A KdV-egyenlet által kifejezett egyensúly nemcsak az eddig vizsgált jelenségre érvényes, hanem minden egydimenziós gyengén diszperziós és nemlineáris hullámra, kis viszkozitású közegeben. Így a KdV-egyenlet írja le a rétegzett folyadékokban kialakuló belső szolitonokat is (l. 7.15 fejezet).

\[^3A \ - V_0 \ mélységű, \ a \ felszélességű \ potenciálisföldöinkben kötött állapotok száma \(\sqrt{2ma^2V_0/\hbar^2} + 1 \). \]
10. fejezet

A görbület hatása

10.1 Nyugati peremáramlatok a kvázigeosztrofikus egyenletből

A kvázigeosztrofikus közelítésben a potenciális örvényesség megmaradását kifejező hidrodinamikai egyenlet stacionárius változata egyenletes aljzat és vízszintes felszín esetén (3.51) alapján

\[U \frac{\partial \Delta \psi'}{\partial x} + \beta \frac{\partial \psi'}{\partial x} = 0, \quad (10.1) \]

ahol \(\psi' \) az \(u_0 = U, v_0 = 0 \) zonális húttéráramlástól való eltérést írja le. Itt a nemlineáris tagokat elhagyjuk, de utólag meggyőződhetünk róla, hogy ennek az egyenletnek megtalált megoldása az egzakt (3.58) nemlineáris egyenlet megoldása is. A teljes áramlási függvény \(\psi = \psi' - Uy \).

Az eltérést leíró \(\psi' \)-nek el kell tűnnie \(x \to \infty \)-re, s a part mentén örvényes \(u \equiv 0 \) peremfeltétel akkor teljesül, ha

\[\frac{\partial \psi}{\partial y} \bigg|_{x=0} = 0, \quad \text{vagyis} \quad \frac{\partial \psi'}{\partial y} \bigg|_{x=0} = U. \quad (10.2) \]

Keressük ezért a megoldást a

\[\psi'(x, y) = Uy \ g(x) \quad (10.3) \]

alakban, ahol \(g(0) = 1 \) és \(g(\infty) = 0 \). A (10.1) -ből \(g \)-re kapott differenciálegyenlet \(g''' = - (\beta/U) g' \). Ennek kivánt megoldása \(g(x) = \exp(-x/\Delta) \), ahol \(\Delta \) a (3.55) karakterisztikus hosszúság \((U/\beta < 0) \). A teljes áramlási függvény ezért

\[\psi = -U \ y \ (1 - e^{-x/\Delta}), \quad (10.4) \]

melyből a két sebességkomponens

\[u = U(1 - e^{-x/\Delta}), \quad v = -U \frac{y}{\Delta} e^{-x/\Delta}. \quad (10.5) \]

Az exponenciális lecsengés miatt a húttéráramlástól való eltérések csak a part körüli néhányszor \(\Delta \) vastagságú rétegben jelentős, ahol észak-déli áramlás alakul ki, mely az \(x = y = 0 \) torlópontot távolodva erősödik |y|-kal. Ez azonban nem vezet a vastagság szélességéhez.

A potenciális örvényesség a mozgás során valóban állandó. Az örvényesség ugyanis \(\zeta = \Delta \psi = - \beta y \exp(-x/\Delta) \), azaz \(\zeta + \beta y = \beta y(1 - \exp(-x/\Delta)) = -\psi \beta / U \). Mivel az áramvonalak mentén \(\psi \) állandó, a teljes örvényesség is az.

Ha az áramlás a parttól elfele irányul, azaz \(U/\beta > 0 \), akkor a \(\Delta \) paraméter helyett a \(\lambda_c \) hullámbossz (3.41) jelenik meg. Az áramlási függvény és a sebességkomponensek:

\[\psi = -U y \left[1 - \sin \left(\frac{2\pi x}{\lambda_c} \right) \right], \quad (10.6) \]
\[u = U \left[1 - \sin \left(\frac{2\pi x}{\lambda_c} \right) \right], \quad v = U \frac{2\pi y}{\lambda_c} \cos \left(\frac{2\pi x}{\lambda_c} \right). \quad (10.7) \]

Érdekes megfigyelni, hogy a zonálisra merőleges \(v \) sebesség \(y \)-nál erősebb. Ez kvalitatíven megfelel a Golf-áramlat azon tulajdonságának, hogy északi peremén a meanderezés erősebb, ott könnyebben szakadnak le gyűrűk.

10.2 Egyenlítői dinamika

10.2.1 Az egyenlítői \(\beta \)-sik és Rossby-sugár

Az Egyenlítőn \((\varphi = 0)\) az \(f \) Coriolis-paraméter (3.4) szerint elűnik. Az \(f \sim y \) lineáris közelítés a 10 fokos szélességig néhány százalékos hibával érvényes. Azt írhatjuk tehát, hogy az Egyenlítői környéken (az \(y_0 = 0, x_0 \) tetszőleges origójú koordinátarendszerben) a Coriolis-paraméter

\[f = \beta_E y, \quad (10.8) \]

ahol

\[\beta_E \equiv \pm \frac{2\Omega F}{R_F} = \pm 2,3 \cdot 10^{-11} \text{/(ms)} \quad (10.9) \]

az ún. egyenlítői \(\beta \)-paraméter, s az alsó előjel a déli félgömbre vonatkozik. A vízszintes síkbeli sebesség a sekélyfolyadék egyenletek szerint

\[
\frac{du}{dt} = \beta_E y v - \frac{\partial \eta}{\partial x}, \quad (10.10)
\]

\[
\frac{dv}{dt} = -\beta_E y u - \frac{\partial \eta}{\partial y}, \quad (10.11)
\]

s a (9.3) kontinuitási egyenlet változatlan alakban érvényes. Az egyenlet matematikai struktúrájában új vonás, hogy lineáriszt változata nem állandó együtthatós.

Egyszerűen megtehcülvethető annak a sávakk az \(R_E \) távolsága, melyen kívül az \(f_0 \)-közelítés már érvényes lehet, azaz ahol már visszatérhetünk az eddig vizsgált mérsekeltségi hidrodinamikához. E tartományon kívül a (3.13) Rossby-sugár már nyilván értelmezhető, s \(R_E \) az a karakterisztikus hossz, melyre a Rossby-sugár megegyezne az Egyenlítőtől mért távolsággal: \(R_E = \sqrt{gH/|\beta_E|} \). Ebből

\[R_E \equiv \frac{(gH)^{1/4}}{|\beta_E|^{1/2}} = \frac{c_0}{|\beta_E|}, \quad (10.12) \]

ahol \(c_0 = \sqrt{gH} \) a nem forgatott sekély folyadék hullámsebessége. Az \(R_E \) távolságot szokás egyenlítői Rossby-sugarnak nevezni. Az Egyenlítőhöz \(R_E \)-nel közelebb eső szélességeken a sekély folyadék egyenletek (10.10), (10.11) alakja használható. Az egyenlítői \(\beta \)-paraméter értékével \(R_E \) nagysága 3000 km-ek adódik az óceánban. A rétegzettség ezt az értéket egy nagyságre kettő csökkenti, mellyel \(R_E \) 2 - 3 foknyi szélességeknek felé meg.

10.2.2 Egyenlítői Kelvin-hullámok

Az egyenlítői sekélyfolyadék egyenleteknek létezik olyan lineáris hullám megalása, mely északi-déli sebességgel nem jár, tehát mintha az Egyenlítő merev falként viselkedne az ilyen
mozgások szempontjából. A hullámot \(x \) irányban haladó síkhullámnak feltételezve, a megoldást \((u, v, \eta) = (u_0(y), 0, \eta_0(y)) \exp(i\omega t - i k_x x)\) alakban keresünk, ahol az amplitudók \(y \)-függése egyelőre határozatlan. A vízszintes aljzati közegben a \(H \) átlagos mélység körül linearizált (10.10), (10.11), (9.3) egyenletekbe helyettesítve az

\[
\dot{\omega}_0 u_0 = i k_x g \eta_0, \tag{10.13}
\]
\[
\beta_E \dot{y}_0 u_0 = -g \eta'_0, \tag{10.14}
\]
\[
\dot{\omega}_0 \eta_0 = i k_x H u_0, \tag{10.15}
\]
összefüggéseket kapjuk, ahol a vessző az \(y \) szerinti derivált jelöli. Az első és harmadik egyenletből: \(\omega^2_0 = g H k_x^2 \), az elsőből \(u_0 = k_x g \eta_0 / \omega_0 \). Ezeket a másodikba helyettesítve \(\eta'_0 = - (\beta_E k_x / \omega_0) \cdot y \eta_0 \). Ennek megoldása \(y^2 \)-ben exponenciális függvény. Fizikailag értelmes, az Egyenlítőtől távolodva lecsengő megoldást csak akkor kaphatunk, ha \(\beta_E \) és \(\omega_0 \) előjele azonos. Ebből

\[
\omega_0 = \pm \epsilon_0 k_x, \tag{10.16}
\]
ahol a negatív előjel továbbra is a déli feltekére vonatkozik, és

\[
\eta_0 \sim e^{-y^2/(2R_F^2)} \tag{10.17}
\]

A hullám tehát a szokásos Kelvin-hullámokhoz hasonlóan lecseng, éppen az \(R_F \) egyenlítői Rossby-sugár távolságán, de a lecsengés most négyzetesen függ az \(y \) távolságától. Az ilyen egyenlítői Kelvin-hullám mindkét feltekén keletre halad, s mivel nem diszperzív, energiája is ebe az irányba halad.

10.2.3 Egyenlítői Poincaré- és Rossby-hullámok

Ha nem tesszük fel, hogy az észak-déli sebesség eltűnik, a linearizált (10.10), (10.11), (9.3) egyenletek megoldása kereshető az \((u, v, \eta) = (u_0(y), v_0(y), \eta_0(y)) \exp(i\omega_0 t - i k_x x)\) alakban, ahol az amplitudók \(y \)-függése most is egyelőre határozatlan. A vízszintes aljzatú közegben a \(H \) átlagos folyadékvastagság körül linearizálva az

\[
\dot{\omega}_0 u_0 - \beta_E y_0 v_0 = i k_x g \eta_0, \tag{10.18}
\]
\[
\dot{\omega}_0 v_0 + \beta_E y_0 u_0 = -g \eta'_0, \tag{10.19}
\]
\[
\dot{\omega}_0 \eta_0 + H \eta'_0 = i k_x H u_0, \tag{10.20}
\]
eyenleteket kapjuk. A harmadikból

\[
\eta_0 = \frac{H}{\omega_0} (k_x u_0 + \dot{\omega}_0). \tag{10.21}
\]
Ezt (10.18)-be helyettesítve

\[
u_0 = -i \frac{\beta_E \omega_0 y_0 u_0 - \epsilon_0^2 k_x v'_0}{\omega_0^2 - \epsilon_0^2 k_x^2} \tag{10.22}
\]
Itt fel kell tenyészünk hogy \(\omega_0^2 \neq \epsilon_0^2 k_x^2 \). Ezt (10.21)-ba helyettesítve, a felszíni alak amplitudóját is kifejezzük az \(y \) irányú sebességgel:

\[
\eta_0 = -i H \frac{\beta_E k_x y_0 u_0 - \omega_0 v'_0}{\omega_0^2 - \epsilon_0^2 k_x^2} \tag{10.23}
\]
Mindez (10.19) alapján a
\[
-v_0'' + \frac{y^2}{R_E^4} v_0 = \left(\frac{\omega_0^2}{c_0} - \frac{\beta E k_x}{\omega_0} - \frac{k_x^2}{c_0^2} \right) v_0
\]
(10.24)
megszorítást jelenti a \(v_0 \) amplitudójára. Ha a távolságot \(R_E \) egységekben mérjük és mindkét oldalt osztjuk 2-vel, akkor
\[
\frac{1}{2} v_0'' + \frac{1}{2} \frac{y^2}{R_E^2} v_0 = \frac{R_E^2}{2} \left(\frac{\omega_0^2}{c_0} - \frac{\beta E k_x}{\omega_0} - \frac{k_x^2}{c_0^2} \right) v_0.
\]
(10.25)
Ez a harmonikus oszcillátor Schrödinger-egyenlete\(^1\). Mivel lecsengő megoldásokat keresünk, a peremfeltétel az, hogy \(v_0 \)-nak \(|y| \rightarrow \infty \) esetén el kell tűnnie. Ezzel az analógia teljes: a jobb oldalon a \(v_0 \) előtt fellepő konstansnak a harmónikus oszcillátor dimenzióban sajátenergiájának kell lennie. Ez az \(n \) kvantumszámmal állapotban \(n + 1/2 \). Az egyenlítői hullámok tehát az \(n = 0, 1, \ldots \) természetes számokkal megkülönböztethetők. Az \(n \)-edik hullám diszperziós relációját az
\[
\omega_0^2 = \left(\frac{2n + 1}{R_E^2} \right) k_x^2 + gH k_x^2 = (2n + 1)c_0|\beta E| + c_0^2 k_x^2 = c_0|\beta E|(1 + 2n + (R_E k_x)^2). \]
(10.26)
eyenlet határozza meg. Az ehhez tartozó \(v_0(y) \) amplitudó a kvantummechanikai analógai alapján
\[
v_0(y) = e^{-y^2/(2R_E^2)} H_n \left(\frac{y}{R_E} \right),
\]
(10.27)
ahol \(H_n(z) \) az \(n \)-edik Hermite-polinom.

Az \(n = 0 \) indexű esetet kívve a hullámok két családra bomlanak. Egyikükben a frekvencia sokkal nagyobb \(\beta E / k_x \)-nél. Ekkor a \(\beta E \)-vel arányos tag a diszperziós relációban elhanyagolható, s
\[
\omega_0^2 = \left(\frac{2n + 1}{R_E^2} \right) k_x^2 + (2n + 1) c_0^2 |\beta E| + c_0^2 k_x^2 = c_0^2 |\beta E|(2 + n + (R_E k_x)^2). \]
(10.28)
Ez ugyanolyan típusú mint az \(f_0 \)-sik Poincaré-hullámaié (l. (3.14)), ezért ezt a családot egyenlítői tehetségesi hullámoknak hívják. Érdemes megfigyelni, hogy annak ellenére, hogy \(f_0 \) nem létezik, megjelen egy frekvencia dimenziójú mennyiséggel, \(\sqrt{c_0^2 |\beta E|} \). Ez annak az időnek a reciproka, mely alatt a felszín hullámok az \(R_E \) Rossby-sugármú távolságot befutják. A növekvő \(n \) indexű Poincaré-hullámok diszperziós relációja egyre nagyobb frekvenciánál kezdődik (l. 10.1 ábra).

A másik hullámsaládban a frekvencia sokkal kisebb \(c_0 k_x \)-nél. Ekkor az \(\omega_0^2 \)-es tag hanyagolható el (10.26)-ben, és
\[
\omega_0 = -\beta E \frac{k_x}{k_x^2 + (2n + 1)R_E^2} = \mp \sqrt{c_0^2 |\beta E| + R_E k_x^2}\left(1 + 2n + (R_E k_x)^2\right). \]
(10.29)
Mivel ez ugyanolyan típusú mint (3.35), az ilyen hullámokat egyenlítői Rossby-, vagy egyenlítői planetáris hullámoknak nevezzük. Ezek az elnevezés ellenére nem feltétlenül kvázigeoastrofikus hullámok, hiszen a \(k_x = R_E \) hullámszámmal pl. a \(\beta E R_E / (2n + 2) \) frekvencia társul, mely kis \(n \)-ekre összehasonlító az \(y = R_E \) szélességtől tartozó Coriolis-paraméterrel. A két hullámsalád frekvenciája ennek ellenére jól szétválik. A Poincaré-hullámok minimum és a Rossby-hullámok maximális frekvenciájának aránya \(2(2n + 1) \), mindig nagyobb, mint 6.

\(^1\) A \(V = (1/2)m \omega_x y^2 \) potenciálban mozgó \(m \) tömegű, \(E \) energiája részcsebe Schrödinger-egyenlete
\(-\Psi'' + (m^2 \omega_x^2 / \hbar^2)y^2 \Psi = \left((2m) / \hbar^2 \right) E \Psi \). A sajátértékspektrum \(E = \hbar \omega(n + 1/2) \). A (10.24) egyenlettel való összehasonlításból látszik, hogy az \(R_E \) Rossby-sugár \(\sqrt{\hbar / (m \omega_x)} \), azaz a kvantummechanikai probléma természetes távolsággyögeinek felel meg, melyhez \(\hbar \omega \) energiaegység tartozik.

224
10.1 ábra: Az egyenlítői hullámok diszperziós relációja az északi fételek. A tehetséges-gravi-
tációs és a Rossby-hullámoknak az \(n = 1, 2, \ldots \) egész számokkal jellemzett spektruma létezik.
Az \(n = 0 \) indexhez egy kevert planetáris-gravitációs hullám tartozik. A Kelvin-hullám az \(n = -1 \)
válaszásnak felettethető meg.

Az \(n = 0 \) indexű hullám különleges, mert mindkét családhoz tartozik egyszerre. Ekkor a
(10.26) diszperziós reláció átható mint \((\pm \omega_0/\omega_0 + k_x)(\pm \omega_0/\omega_0 - \beta_E/\omega_0 - k_x) = 0 \).
Mivel az első tényező a levezetésben használt feltevés szerint nem lehet nulla, az \(n = 0 \) módos diszperziós
relációját a

\[
\pm \frac{\omega_0}{\omega_0} - \frac{\beta_E}{\omega_0} = k_x
\]

(10.30)
feltétel adja. Ez nagy frekvenciákrak \(|\omega_0| \approx c_0 k_x \) alakú, míg kicsire \(\omega_0 \approx -\beta_E/\omega_0 \). Ez a hullám bizonyos hullámszámokra gravitációs, másokra pedig Rossby-szerű, ezért kevert planetáris-gravi-
tációs hullámok nevezik. Mivel a (10.26) diszperziós reláció a formális \(n = -1 \) választással a
(10.16) összefüggést adja, a Kelvin-hullámok is beleilleszthetők ebben az egyesített tárgyalásba.

A 10.1 ábra diszperziós relációjáról leolvasható az alacsony frekvenciájú egyenlítői hullá-
mok visszaverődési törvénye észak-déli partvonalon. A mindig kelet felé haladó Kelvin-hullámok
a keleti peremen történő visszaverődés után ugyanolyan frekvenciájú hosszú Rossby-hullámokká
válnak, melyek az energiát nyugat felé szállítják. A nyugati peremen történő ütközéskor a
Rossby-hullám most nemcsak rövid Rossby-hullámként verődhet vissza, hanem hosszú Kelvin-
hullámként is. Ez egyben gyengíti a rövidhullámú zavarok felhalmozódását a nyugati perem
mentén, vagyis a nyugati peremáramlatot. Ugyanakkor a keleti peremen való ütközéskor a sarok
felé haladó Kelvin-hullám is keletkezhet, s így az egyenlítői hullámok összenergiája csökkenhet2.
Az egyenlítői hullámok, visszaverődésük és egymásba alakulásuk fontos szerepet játszik az El
Nino-jelenségkörben.

\(^2\)Erre nincs mód a nyugati peremn, mert ott az észak-déli part menti Kelvin-hullámok csak az Egyen-
lítő felé közlekedhetnek, s az ottani energiát csak növelhetik.
10.3 Gömbi hidrodinamika

10.3.1 Gyorsulások gömbi koordinátákban

Először meghatározzuk, hogyan fejezhető ki egy nem forgatott gömbön mozgó test gyorsulása pillanatnyi gömbi \((\lambda, \varphi, r)\) koordinátáival (10.2 ábra) és azok időderiváltjaival.

![Gömbi koordináták diagrama](image)

10.2 ábra: A gyorsulásvektor komponensei a gömbi rendszerben.

A \(\phi\) irányú komponens mindkét felében akkor pozitív, ha a közelebbi sarok felé mutat. Mint minden vektormennyiséget, a gyorsulást is kelet-nyugati, észak-déli és sugárirányú komponensekre bontjuk \(a = (a_\lambda, a_\varphi, a_r)\). Célzurú a testet követő gyorsuló koordinátarendszerben dolgozunk, ahol természetesen tehetetlenségi erők is hatnak. Az itt fellépő \(a_r\) centrifugális, \(a_C\) Coriolis-, és \(a'\) transzlációs gyorsulásból (az utóbbi abból adódik, hogy a test általában nem mozog egyenletesen a gömbi koordinátarendszerben), a nyugvó gömbön érzékelhető gyorsulás

\[
a = a' - a_{r/} - a_C.
\]

(10.31)

A mozgást gondolatban felbontjuk három független komponensre: egy észak-déli tengely körüli, \(\lambda\) pillanatnyi szögsebességű forgásra, egy, az Egyenlítő súkjában fekvő tengely körüli, \(\varphi\) pillanatnyi szögsebességű forgásra, miközben a középponttól mért \(r\) távolság állandó, és egy \(r\) sebességgű radiális mozgásra, melynek során a tengelyek irányítottsága nem változik (\(\lambda\) és \(\varphi\) állandó).

![Centrifugális és Coriolis komponensek diagrama](image)

10.3 ábra: Az észak-déli tengelyű, \(\lambda\) szögsebességgel forgó koordinátarendszerben fellépő centrifugális erő, és komponensei. A szaggatott vektorok a forgó rendszerben észlelt sebességkomponenseket jelölik.

Az észak-déli tengely körüli \(\lambda\) szögsebességgel forgó rendszerben \(r \cos \varphi \lambda^2\) centrifugális gyorsulás hat a testre, melynek \(r\)- és \(\varphi\)-komponensei (10.3 ábra) \(r \cos^2 \varphi \lambda^2\), ill. \(\pm \sin \varphi \cos \varphi \lambda^2\). A test relatív sebessége ebben a rendszerben a \(\varphi\) irányban \(r \dot{\varphi}\), a radiális irányban \(\dot{r}\). A sebességvektor tehát az észak-déli tengellyel párhuzamos síkban fekszik, s ezért a Coriolis-gyorsulásnak csak
λ-irányú komponense van: 2λrφ sin φ - 2λr cos φ. Ezzel társul egy ugyanilyen irányú, r cos φλ nagyságú transzlációs gyorsulás. Az inerciarendszerbeli a gyorsuláshoz adódó járulék tehát

\[
\left(r \cos \varphi \lambda + 2 \lambda (r \cos \varphi - r \dot{\varphi} \sin \varphi), \pm r \sin \varphi \cos \varphi \lambda^2, -r \cos^2 \varphi \lambda^2 \right).
\] (10.32)

Az Egyenlítő síkjában fekvő, φ szögebességgel forgó rendszerben rφ2 nagyságú, sugár irányú centrifugális gyorsulás hat a testre (10.4 ábra). A test relatív sebessége ebben a rendszerben az r irányban r, a λ irányban r cos φλ. A Coriolis-gyorsulásnak tehát csak φ irányú komponense létezik, s az ±2rφ. Ezzel társul egy φ irányú, rφ nagyságú transzlációs gyorsulás. A járulék az inerciarendszerbeli a gyorsuláshoz most

\[
\left(0, \pm (r \ddot{\varphi} + 2r \dot{\varphi}), -r \dot{\varphi}^2 \right).
\] (10.33)

10.4 ábra: Az egyenlítői síkjában fekvő, φ szögebességű koordinátarendszerben fellépő centrifugális erő. A szaggatott vektor a forgó rendszerben észlelt sebességek a rajz síkjába eső komponensét mutatja. A másik komponens párhuzamos a forgástengelyel és ezért nem ad járuléket a Coriolis-gyorsuláshoz.

A r sebességű radialis mozgás követésekor forgásból származó tehetséges erők nem lépnek fel, a transzlációs gyorsulás \(\ddot{r} \), s a járulék

\[
(0, 0, \ddot{r}).
\] (10.34)

Minhárom járulékot figyelembe véve kapjuk, hogy a gyorsulás kifejezése a gömbi koordinátákkal és azok deriváltjaival

\[
a_\lambda = r \cos \varphi \lambda + 2 \lambda (r \cos \varphi - r \dot{\varphi} \sin \varphi),
\] (10.35)

\[
a_\varphi = \pm (r \ddot{\varphi} + 2r \dot{\varphi} + r \sin \varphi \cos \varphi \lambda^2),
\] (10.36)

\[
a_r = r \ddot{r} - r \dot{\varphi}^2 - r \cos^2 \varphi \lambda^2.
\] (10.37)

A második deriváltak mellet megjelennek az első deriváltak szorzatait tartalmazó tagok is.

Érdemes összehasonlítani a gyorsulásokat a

\[
\mathbf{v} = (r \cos \varphi \lambda \equiv u, \pm r \dot{\varphi} \equiv v, \dot{r} \equiv w)
\] (10.38)

sebességvektor időderiváltjáival. Ezek

\[
\frac{du}{dt} = r \cos \varphi \lambda + \dot{r} \cos \varphi \lambda - r \sin \varphi \lambda \dot{\varphi} = r \cos \varphi \lambda + \frac{uv}{r} \mp \frac{uv}{r} \tan \varphi,
\] (10.39)

\[
\frac{dv}{dt} = \pm (r \ddot{\varphi} + r \dot{\varphi}) = \pm r \ddot{\varphi} + \frac{uv}{r}, \quad \frac{dw}{dt} = \ddot{r}.
\] (10.40)

A gyorsulások tehát az

\[
a_\lambda = \frac{du}{dt} + \frac{uv}{r} - \frac{uv}{r} \tan \varphi, \quad (10.41)
\]

227
összefüggésben állnak a sebességek időderiváltjával. A köztük fellépő különbség a sebességek szorzatait tartalmazó ún. *metrikus gyorsulás*, mely a koordinátarendszer görbületségeinek következménye.

10.3.2 Hidrodinamika a forgó Földön

A gömbi gyorsulások levezetése után visszatérünk a forgó Földhöz, és az azon zajló áramlásokhoz. Az Euler-egyenletben a gyorsulások sebességderiváltakkal megadott fenti alakját használjuk. A d/dt mennyiség természetesen a teljes deriváltat jelöli. A külső erőként figyelembe vesszük a folyadékérszekekre ható Coriolis-erőt, s a helyi gravitációs erőt. A jobb oldalon a nyomásgradient a lokális (x,y,z) koordináták szerinti deriváltakkal fejezzük ki. Az egyenlet összennyomat átlan folyadéka tehát

\[
a_t = \frac{Dv}{dt} = \frac{u_t v - u w_t}{r} + u w_t + 2g_y w - \frac{\partial p}{\partial t},
\]

\[
a_r = \frac{Dv}{dt} = -\frac{u^2 + v^2}{r} - \frac{\partial p}{\partial r} - g.
\]

Itt f az (3.4) Coriolis-paraméter, Ω_y a Föld forgási szögszebségének (3.3) észak-déli komponense. Az egyenlet azt mutatja, hogy a teljes Földre kiterjedő hidrodinamikai mozgások leírásában a metrikus gyorsulásokat is lényegesek.

Vizsgáljuk most meg, mikor lehet ezenket a tagokat elhanyagolni. Ehhez dimenziótlanítjuk az egyenleteket. A vízszintes koordinátákat L, a függőleges H egységekben mérjük, a karakterisztikus vízszintes sebességet U-nak, a függőleges UH/L-nek, a jellegzetes dinamikai nyomást ∂f_0UL-nek tekintjük. A folyadék korlátos mélységét kihasználjuk abban, hogy a metrikus gyorsulásokban szereplő r távoliságot a Föld R_F sugarával közéltjük. Az egyszerűség kedvéért csak a közepes szélességekre vonatkozó alapot vizsgáljuk. A dimenziótlan egyenlet így

\[
R_o \frac{Du}{dt} + R_o \frac{L}{L} \left(\epsilon v u - u w_t g \varphi \right) = \frac{f}{f_0} v - \frac{2\Omega_y}{f_0} w - \frac{\partial p}{\partial x},
\]

\[
R_o \frac{Du}{dt} + R_o \frac{L}{L} \left(\epsilon v w + u^2 g \varphi \right) = \frac{f}{f_0} u - \frac{\partial p}{\partial y},
\]

\[
R_o \frac{2 Du}{dt} - R_o \frac{L}{2} \left(\epsilon u^2 + v^2 \right) = \frac{2\Omega_y}{f_0} w - \frac{\partial p}{\partial z}.
\]

Itt ϵ a H/L mélységi arányt jelöli. Ha most figyelembe vesszük azt is, hogy a folyadék selély: $\epsilon \ll 1$, sok tag kiesik. Az utolsó egyenlet a hidrostatikai közéltésbe megy át és Ω_y eltűnik a vízszintes sebességkomponensek egyenlőtlensében. Releváns paraméterként megmarad viszont az L/RF hányados, a lineáris kiterjedés viszonya a Föld sugarához. Ha ez nagyon kicsi, akkor visszakapjuk a 3.2 fejezetben tárgyalt f_0-sik közéltést. A tgv-vel arányos tagok akkor is elhanyagolhatók, ha L/RF véges, pl. 0.1 körüli, de a Rossby-szám kicsi, hiszen az együttáthatója ekkor két kis szám szorozta. Ugyanezek a jogok megtartani az $f/f_0 = \pm(1 + \beta y)$ alakban az y-nál arányos tagot. A kvízgeosztrofikus közéltés ezt követően a 3.3 fejezetben bevezettet β-sik közéltészel, azaz ilyenkor a Földre gőrbületéből adódó legfontosabb járulék valóban a Coriolis-paraméter lineáris helyfigyelése. A metrikus gyorsulások elhanyagolhatók, azaz használhatjuk a lokális derékszögű koordinátarendszert.

228
11. fejezet

A viszkozitás hatása

11.1 Ekman-transzport az alsó határrétegben

Érdemes megvizsgálni, hogy a viszkozitás következtében milyen mértékű az izobárokra merőleges, tehát a geoszfúrifikustól eltérő anyagmozgás a teljes határrétegben. Definiáljuk ezért az

\[S = \int_{0}^{\infty} (u - u_{g})dz \]

(11.1)

Ekman-transzportot. Az Ekman-transzport és a határréteg \(D \) vastagságának hányadása a határrétegbeli átlagos sebesség. Az integrál felső határát kényelmi okokból vesszük végtelemnek. A sebességváltozás nagyságának a magassággal történő exponenciális lecsengése miatt az integrál a \(z = D \) szint fölött már gyakori tilalag nem ad járuléket. A (4.14) egyenletet integrálva, a (11.1) definíció alapján kapjuk, hogy

\[f \mathbf{n} \times \mathbf{S} = -\nu \frac{\partial u}{\partial z}_{z=0} \]

(11.2)

Kihasználtuk, hogy a felső határon a sebesség belesül a geoszfúrifikusba, s hogy a geoszfúrifikus sebesség független a magasságtól. A sebesség \(z \) szerinti deriváltja az alaplapon (4.26) szerint ismert, s ezzel

\[f \mathbf{n} \times \mathbf{S} = -\nu \delta (u_{g} + \mathbf{n} \times \mathbf{u}_{g}). \]

(11.3)

Mivel \(\mathbf{n} \times \mathbf{n} \times \mathbf{S} = -\mathbf{S} \), az Ekman-transzport

\[\mathbf{S} = \frac{\nu}{f \delta} (\mathbf{n} \times \mathbf{u}_{g} \mp \mathbf{u}_{g}) = (-u_{g} \mp v_{g}, v_{g} \pm u_{g}) \frac{\delta}{2}, \]

(11.4)

hiszen \(\nu/f = \pm \delta^2/2 \). A felső előjel ismét az északi félkömbnek felé meg. Az eredmény azt mutatja, hogy az Ekman-transzport mindig 135 fokos szöget zár be a geoszfúrifikus áramlás irányával, s az északi (déli) felé közötti balra (jobbra) mutat (11.1) ábra). Az a megjelenő tulajdonság, hogy az Ekman-transzport szöge éppen 45 fok a negatív geoszfúrifikus sebességekhez képest, értetővé válik, ha észrevesszők, hogy a (11.2) egyenlet jobb oldalán \(-\sigma_{3}/\rho_{0} \) áll, ahol \(\sigma_{3} \) a folyadék által az aljzat vízszintes síkjára ható nyúrás feszültség. Ezzel

\[\mathbf{S} = \frac{1}{\rho_{0} f} \mathbf{n} \times \sigma_{3} = \frac{1}{\rho_{0} f} (-\sigma_{3,y}, \sigma_{3,x}). \]

(11.5)

Az Ekman-transzport tehát éppen merőleges a nyúrás vektorra. Ennek azért kell így lennie, mert a teljes határrétegben a sebesség-eltéréssel kapcsolatos Coriolis-erőnek kompenzáltnia kell a viszkozitásból adódó eredő erőt. Az utóbbi nem más, mint a folyadékra alul ható erő, azaz az
aljzatra ható nyíróerő ellentettje (11.1 ábra). A nyíróerő viszont (4.26) szerint 45 fokot zár be a geosztrofikus sebességgel¹.

11.1 ábra: Az Ekman-transzport az alsó határértégeben 45 fokos szögét zár be a geosztrofikus sebesség ellentettjével. Az u_p geosztrofikus sebesség, a S Ekman-transzport és az aljzat által a folyadéka ható $-\sigma_3$ nyíróerő elhelyezkedése az (x,y) síkon olyan, hogy eredőjük nulla legyen. Az ábra az északi féltekre jellemző irányítottságot mutatja. A C vektor az Ekman-transzportnak megfelelő átlagos sebességvötkényre ható Coriolis-erőt jelöli, mely merőleges magára az Ekman-transzportra.

11.2 A Stommel-modell

H. M. Stommel amerikai oceanográfus (1920-1992, a Golf-áramlat első részletes elméletének kidolgozója, a modern oceanográfia egyik megalapozója) nevéhez fűződik az a felismerés, hogy a nyugati peremáramlatok véges méretének kialakulásában alapvető szerepe van az alsó határértégek is. Az ott kialakuló feláramlás w_+ erőssége ugyanis függ a geosztrofikus örvényességtől. Mivel az az áramvonalak elhanyarodása miatt a medence nyugati peremén nagy érték is lehet, az alsó határérték itt nem hanyagolható el. Valóban, ha a feláramlási sebesség magasság szerinti deriváltját a $\partial w/\partial z = (w_+ - w_-)/H$ alakban írjuk, akkor látszik, hogy elegendően nagy ciklonális örvényesség esetén a w_+ olyan nagy negatív szám lehet, hogy a derivált előjelet változtatja meg a felső határérték hatását figyelembe vonva felesleges képet. Ekkor a Sverdrup-transzport is előjelet vált, s ezek felé történő áramlást ír le. Ez történik a nyugati peremáramlat kialakulási helyén. Mivel most w_+ nem zérus, a peremáramlat vastagsága is véges értéknek adódik.

A (4.54) egyenlet általánosítása tehát

$$v_g \beta = f \frac{w_+ - w_-}{H} = \frac{\text{rot}_x \tau}{\tilde{\beta}_0 H} + \frac{1}{t_0} \frac{\Delta \psi}{\tilde{\beta}_0}. \quad (11.6)$$

Itt t_0 a (4.35) felpörgetési idő.

A Ψ mélységi áramlási függvényre vonatkozó egyenlet ezért

$$\frac{\partial \Psi}{\partial x} = \frac{\text{rot}_x \tau}{\tilde{\beta}_0} - \frac{1}{t_0 |\tilde{\beta}|} \Delta \Psi. \quad (11.7)$$

A nyugati perem közelében lényegesen a kelet-nyugati irányú változások, míg az észak-déliik mindenütt gyengék. Ezért azt várjuk, hogy az x szerinti deriváltak dominálnak, s ezért a Laplace--operator az x szerinti második deriválttal helyettesíthető:

$$\frac{\partial \Psi}{\partial x} + \frac{1}{t_0 |\tilde{\beta}|} \frac{\partial^2 \Psi}{\partial x^2} = \frac{\text{rot}_x \tau}{\tilde{\beta}_0}. \quad (11.8)$$

¹Ez az eredmény azonos a felső határértégeiből Ekman-transzportot a szélyfúra erősségével megadó (4.42) alakok (l. ?? fejezet), ha azt is a folyadékban fellépő nyírással, tehát $-\tau$-val fejezzük ki.
A jobb oldal $d\tau_x/dy$-nal arányos, és csak y-től függ. A megoldást a $\Psi = -g(x) d\tau_x/dy/(\beta\theta_0)$ alakban keresve a $g' + g''/(\tau_0/\beta) = 1$ egyenlet adódik. Ennek olyan megoldása, melyre a perem a $\Psi = 0$ értékekhez tartozik, vagyis, $g(0) = g(L_x) = 0$,

$$g(x) = x - L_x \frac{(1 - e^{-t_0 / |\beta| \tau_x})}{(1 - e^{-t_0 / |\beta| |L_x|})} \approx x - L_x(1 - e^{-t_0 / |\beta| \tau_x}).$$

(11.9)

A közelítésben felhasználtuk, hogy $t_0 / |\beta| L_x >> 1$. Így jó közelítéssel

$$\Psi(x, y) = \frac{1}{dy} \left(L_x(1 - e^{-x / \Delta}) - x \right).$$

(11.10)

Itt

$$\Delta = \frac{1}{t_0 / |\beta|} = \frac{|f / 2 | |\beta|}{|H|} = \frac{\sqrt{f / 2 |\nu|}}{|H| \beta} = \frac{|f|}{|\beta|} \sqrt{\frac{E_k}{2}}$$

(11.11)

a nyugati peremáramlat karakterisztikus szélessége (11.2 ábra). Az alsó határréteg hatása az $x < 3\Delta$ tartományban lényeges, hiszen (11.9) szerint itt történik meg az $u = 0$ peremfelfeltételhez szükséges átmenet. A Stommel-modell tehát mintegy felbontja a peremáramlatok partra merőleges kiterjedését. Adataink alapján $\Delta \approx 10km$ adódló, azaz az áramlat szélessége kb. 30 km, jó egyezésben a megfigyeléssel. Fenti közelítéstünk, miszerint $L_x / \Delta >> 1$ tehát jogos volt. Hasonlóan látható be az is, hogy a megoldásban az y szerinti második derivált elhanyagolhatóak az x szerintiek mellett.

![Diagram](image_url)

11.2 ábra: A Stommel-modell áramlási képe az 4.13 ábrához is használt nyírás-eloszlásal.

Az áramlás sebességkomponensei:

$$u = -\frac{\tau_0 \pi^2}{\beta \theta_0 L_y H} \left(L_x(1 - e^{-x / \Delta}) - x \right) \cos \frac{\pi y}{L_y},$$

$$v = \frac{\tau_0 \pi}{\beta \theta_0 L_y H} \left(L_x e^{-x / \Delta} - 1 \right) \sin \frac{\pi y}{L_y}.$$

(11.12)

A nyugati peremtől távol a sebességek gyakorlatilag megegyeznek az előző fejezet egyszerű modelljéből kapottakkal. A lényeges eltérések az $x < \Delta$ tartományban jelentkeznek. Itt pl. a v sebességkomponens első tagja L_x / Δ-sor, azaz mintegy 600 sor nagyobb a másodiknál (s egyben az egyszerű modellre jellemző értéknél). A part mentén ezért közeli m/s nagyságrendű sebességek lépnek fel a peremáramlatban. A megoldás leírja azt a tapasztalati tényt is, hogy a peremáramlatok erőssége kialakulásuk után a haladási irányban nő (a szímsz függyéveny növekvő) a medence közepéig.

231
Az origóbeli torlódási pont környékén
\[\Psi(x, y) = y \text{ konstans } (1 - e^{-x/\Delta}), \] (11.13)
ugyanolyan típusú, mint a tehetetlenségi határételeget leíró (10.6) eredmény. A nyugati peremáramláson kialakulásának tehát vannak mind a surlódástól független, mind az Ekman-határétegből adódó okai. Mindekként egyértelműen mutatja a \(\beta \)-hatás fontosságát. Az egyesített meglőkeltésben a nemlineáris tagokat is figyelembe kellene venni, melyek a nyugati parttól való elkanyarodást követő meanderező mozgást is leírják a 3.15 ábrával összhangban.

Annak fényében, hogy geoszтроfikus egyensúlyban az áramlásti függvény arányos a felszín \(\eta \) alakjával, a következő kvalitatív képet alakíthatjuk ki. Egy óceáni medence kelet-nyugati hosszúságban a nyugati perem merlet viszonylag gyors átlagos felszínmellék dés történik, mely azután nagyon lassan csökken le a peremen felvett értékre a keleti oldalon (11.3 ábra). A gyors szintemelmélet fenyugati peremáramlat megjelenésével jár együtt, a 2.6a ábra tehát a nyugati perem körüli lokális viselkedésnek felel meg.

![Diagram](image)

11.3 ábra: Egy óceáni medence átlagos felszín alakjának kelet-nyugati keresztmetszete a közepes szélességeken (semitnikus rajz). A viszélszín a nyugati perem néhány szor 10 km-es sávban (a nyugati peremáramlat vastagságában) emelkedik, utána igen lassan csökken. Az anticiklonális áramlásokra jellemző felszíni kidudorodás tehát a \(\beta \)-hatás és a surlódás miatt erősen azsimmetrikusan helyezkedik el.

11.3 A viszkózus folyadék kvázigéoszтроfikus egyenlete

Az alsó határétegbeli Ekman-pumpálás (4.3.2 fejezet) mindig az örvényesség időbeli relaxációját eredményezi, a felszínü nyírású örvényesség pedig előjelének megfelelő örvényességét kelt (4.4.3 fejezet). Ezek a hatások a potenciális örvényesség időbeli fejlődésével meghatározzák. Amennyiben a teljes \(h \) mélység csak keveset tér el a \(H \) átlagos mélységtől, amint azt a kvázigéoszтроfikus közelítés amúgy is megköveteli, a potenciális örvényesség forrása jó közelítéssel

\[
\frac{\text{rot}_{z} \tau}{\beta H} =
\frac{\zeta}{t_0}.
\] (11.14)

Itt megjelenik a geoszтроfikus örvényességet, hiszen a megmaradási tételhez adódó első korrekción keresők. A \(q = (\zeta + f)H/h \) potenciális örvényességet a 4.11 fejezetben láttottak szerint közölve és a \(\psi \) geoszтроfikus áramlásti függvények kifejezve, a

\[
[\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x}] \left(\frac{\Delta \psi}{R^2} + \beta y + \frac{f \psi}{H} \right) = \frac{\text{rot}_{z} \tau}{\beta H} - \frac{\Delta \psi}{t_0}
\] (11.15)

232
alakot kapjuk. Itt R a (2.46) a Rossby-sugár, d pedig a domborzati alak. Ez a viszkozus esetben a β síkon érvényes kvázigéoszfokus egyenlet³. Egyszerű oceánmodelltünk, ill. a Stommel-modell ennek az egyenletnek a stacionáris és lineáriszt változatai a $t_0 = \infty$ ill., $t_0 = \tilde{v}$ géges közelítésben.

A dimenzióltalan kvázigéoszfokus egyenlet³

\[
\left[\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right] \left(\Delta \psi - \left(\frac{F}{R_0} \right)^2 \psi + \frac{d}{R_0} \right) + \frac{B_0}{R_0} \frac{\partial \psi}{\partial x} = \frac{S h}{R_0} \tilde{v} - \frac{\sqrt{\beta k^2 \tilde{v}}}{R_0} \Delta \psi, \quad (11.16)
\]

ahol B_0 a (3.18) β-paraméter, és Sh a (4.47) dimenzióltalan nyírásérősség. Két kvázigéoszfokus áramlás akkor lehet hasonló, ha Froude-számuk, domborzatuk, és β paraméterük mellett Ekman-számuk és dimenzióltalan nyírásérősségük Rossby-számukhoz viszonyított nagysága is azonos.

11.4 A viszkozitás hatása a Rossby-hullámokra

A felülről nem nyírt folyadékban kialakuló kis amplitudójú planetáris Rossby-hullámok egyenlete (11.15) szerint

\[
\frac{\partial}{\partial t} (\Delta \psi) + \beta \frac{\partial \psi}{\partial x} = -\frac{1}{t_0} \Delta \psi. \quad (11.17)
\]

Itt az egyszerűség kedvéért a szabad felszín és a domborzat hatását elhanyagoltuk. Ennek $\psi' = \psi_0 \exp \left(\tilde{\omega}_0 t - ik_xx - ik_yy \right)$ alakú megoldására azt találjuk, hogy a hullám ω_0 frekvenciája komplex,

\[
\omega_0 = \frac{-\beta k_x}{k^2} + i\Gamma, \quad (11.18)
\]

ahol a csillapítási tényező⁴

\[
\Gamma = \frac{1}{t_0} \quad (11.19)
\]

A Rossby-hullámok élettartama tehát hullámhosszuktól függetlenül a felpörgetési idejő. Ez a légkörben néhány nap, az oceánban több hét. A légkör élettartam jól megfelel az időjárási átlagos változási idejének a mérsékelt égövében, mely ismét alátámasztja azt a képet, hogy a Rossby-hullámok az idő járásvéletlen fő hordozói.

A (3.48) domborzati alak által gerjesztett kis amplitudójú Rossby-hullámok az $u_0 = U, v_0 = 0$ háttéraámulás körül lineáriszt kvázigéoszfokus

\[
\frac{\partial \Delta \psi'}{\partial t} + U \frac{\partial \Delta \psi'}{\partial x} + \frac{1}{t_0} \Delta \psi' + \beta \frac{\partial \psi'}{\partial x} = -\frac{U f_0 d}{H} \frac{d}{dx} (x) \quad (11.20)
\]

eyegyenlet megoldásai. A csak x-koordinátától függő stacionáris áramlást az

\[
U \frac{d^2 \psi'}{dx^2} + \beta \frac{d \psi'}{dx} = -\frac{U f_0 d}{H} \frac{d}{dx} (x) \quad (11.21)
\]

eyegyenlet határozza meg. A megoldást a $\psi' = \psi_0 \exp \left(-ikx \right)$ komplex alakban keresve, melyhez a $d = AH \exp \left(-ikx \right)$ domborzati függvényt választjuk, azt kapjuk, hogy

\[
\psi_0 = \frac{f_0 \Delta}{k^2 - k_0^2 + i \frac{k}{t_0} \tilde{v}}, \quad (11.22)
\]

³Ha az oldalsó peremféllelekek kielégítése érdekében megtartjuk a sekélyfolyadék közlekedésben amúgy elhanyagolható viszkozitási tagot, akkor a jobboldalon megjelenik a $\nu \Delta^2 \psi$ kifejezés is. A nyírásérősség, nem forgatott esetben úgy visszalapjuk a kétdimenziós folyadék (8.10) örvényességi dinamikáját.

⁴Ha a szakasos viszkozitási tagot is megtartjuk, akkor a jobboldalon megjelenik a $\Delta^2 \psi/Re$ kifejezés is, ahol Re az (1.28) Reynolds-szám.
ahol $k_c = \sqrt{\beta/U}$. Az amplitudó abszolútértéke

$$|\psi_0| = \frac{f_0A}{\sqrt{(k^2 - k_c^2)^2 + \frac{k^2}{\tilde{t}_0U^2}}}$$

(11.23)

tehát még a k_c rezonancia hullámszánnál is véges a viszkozitás következtében (1. 3.12 ábra).

Ez analog a gerjesztett oszcillátor esetével, hiszen az (11.21) egyenlet a (3.54) megfeleltetés-ssel ekvivalens a gerjesztett, lineárisan csillapított harmonikus oszcillátor egyenletével melyben $1/(t_0U)$ játszza a sürülési együttható szerepét.

Az áramlási függvény maximális értéke $|\psi_0|_{\text{max}} = UA_0\tilde{u}_0/k_c$. Az ennek megfelelő legnagyobb Észak-déli sebesség $|\psi_0|_{\text{max}} \cdot k_c$-vel becsülihető, melyre a (4.35) behelyettesítésével az $UA_0/\sqrt{Ek/2}$ kifejezést kapjuk. Az ismert légköri és óceáni Ekman-szám értékekkel ez már a mélység 1 százalékának megfelelő domborzati amplitudók mellett eléri a háttéralamás U sebességét, vagyis a gerjesztett Rossby-hullám által létrehozott észak-déli sebesség erőssége összmérhetővé válik a háttéralamásval.

11.5 Viharhullámok

Állandó, erős szelekkel járó viharok jelentős, közel állandó erősségű nyírást fejtenek ki a tengerek felszínére. Ha a szél valamely partvonal mentén fúj, mely téle az északi féltéken jobbra, a délután balra esik, akkor a Coriolis-erő következtében kialakuló transzport a part felé irányul. Időben egyre növekvő mennyiségű víz torlódik fel a part mentén (11.4 ábra), viharhullám (storm surge) alakul ki, mely komoly károkat okozhat.

![Diagram](image_url)

11.4 ábra: A viharhullám a part felé irányuló áramlás miatt kialakuló vízszintemelkedés, mely a parttal párhuzamosan fújó szél nyíróereje és a Coriolis-hatás következtében alakul ki. Az északi felteken a viharhullámnak kitett partok a szél haladási irányának jobb oldalára esnek. Egyenletes fújó szél időben egyenletesen emelkedő vízszintet és egyenletesen erősödő parttal párhuzamos áramlást okoz, mígőzben a partra merőleges áramlás időfüggően. A viharhullám hatása a part Rossby-sugár nagyságú környezetére korlátozódik.

A jelenség egyszerűen leírható a szélnyírással gerjesztett (4.49) sekelőfolyadék egyenletekkel. A jegyünk fel, hogy a partvonal észak-déli irányú, a szél északra fúj, s konstans $\tau_y = -\tau_0 < 0$ nyírás feszültséget fejt ki a vízfelszínre. Az áramlási sebességek olyan kicsik, hogy a nemliniáris tagok elhanyagolhatók. Mivel a vízszintemelkedés rendszerint nem túl nagy kiterjedésű, jogosan használjuk az f_0-sik közelítést. A lineáriszt sekelőfolyadék egyenletek az északi féltéken ekkor

$$\frac{\partial u}{\partial t} = f_0 v - g \frac{\partial \eta}{\partial x}, \quad \frac{\partial \eta}{\partial t} = -f_0 u + g \frac{\partial \eta}{\partial y} - \frac{\tau_0}{\tilde{t}_0 H},$$

(11.24)
\[\frac{\partial \eta}{\partial t} + H \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0. \] (11.25)

A nyírás állandó, ezért a probléma eltolásinvariáns az \(y \)-tengely mentén. Feltehetjük tehát, hogy minden változó csak a kelet-nyugati \(x \) koordinátától függ: \(\eta = \eta(x,t), u = u(x,t), v = v(x,t) \). A hidrodinamikai gyorsulás a parttal párhuzamos irányban nem lehet nulla, mert ott állandó erő hat. Az arra merőleges áramlás viszont lehet stacionárius. Az \(u \) komponens időbeni állandóságát feltételezve: \(u = u(x) \), a kontinuitási egyenletből azt kapjuk, hogy \(\eta \) időben lineáris változik, a \(v \) komponens egyenletéből pedig azt, hogy \(v \) is. A nyírás tehát egyenletesen erősíti a parttal párhuzamos áramlást és egyben \(\dot{\eta} \) időben \(\text{állandó} \) szintemelkedést okoz. A lineáris időfüggés leválasztásával közönséges differenciálegyenletrendszer kapunk, mely az \(u(x = 0) = 0 \) peremfeltétellel megoldható. A teljes megoldás:

\[u = -\frac{\tau_0}{f_0 \varrho_0 H} \left(1 - e^{-x/R} \right), \quad v = -\frac{\tau_0}{f_0 \varrho_0 H} e^{-x/R}, \] (11.26)

és

\[\dot{\eta} = \frac{\tau_0}{R f_0 \varrho_0} e^{-x/R}. \] (11.27)

Itt megjelent a \(R = \sqrt{gH / f_0} \) Rossby-sugár, ez határozza meg a partra merőleges térbeli lesenget (11.4 ábra). A kelet-nyugati sebességkompomens amplitudóját a nyírás, az észak-déliét és a szintemelkedés által töltött \(\tau \) nyírás által megadott vizsgálatban a leggyorsabb, hiszen ott a Rossby-sugár kicsi. Viharos szélben \(\tau_0 = 2N/m^2 \), mellyel \(H = 50 \) m-es vízmélységben a part menti szintemelkedés \(d\eta(x = 0)/dt = 8 \) m/nap(!), összhangban a megfigyelt sebességekkel. Természetesen a szelek erőssége változik, s feltételezve ezért csak néhány óráig állandóak, de még ezalatt is több méteres szintemelkedés történhet. Ha a szélősségben térbeli periodicitás is megfigyelhető a part mentén, akkor a szélnyírás Kelvin-hullámokat kel, melyek amplitudója időben nőhet.
12. fejezet

Rétegzett közegek áramlása

12.1 Állóhullámok, tőlengések (seiche)

Széllőkés vagy egyéb periodikus külső hatás következtében hosszú tavakban, öblökben, vagy fjordokban belső állóhullámok (és ezek külső változatai) kialakulhatnak. Az ilyen mozgásokat tőlengésnek (seiche) nevezzük. Tipikus amplitudójuk legfeljebb méter nagyságrendű (a Balatonon 10 cm), lassan csillapodnak, s élettartamuk több nap is lehet. Ezek formálisan a k_x és $-k_x$ hullámszámú visszaxes haladó hullámok szuperpozíciói a sekély vízben. A hidrodinamikai változók tehát ideális folyadéknak

\[(\eta(x,t), \chi(x,t)) = (\eta_0, \chi_0) \cos k_x x \cdot \sin \omega t, \]

\[(u_1(x,t), u_2(x,t)) = (u_{10}, u_{20}) \sin k_x x \cdot \cos \omega t \]

(12.1)

alakúak, ahol a frekvencia továbbra is valamelyik lehetséges terjedési sebesség és a k_x hullámszám szorzata, és a (5.59), (5.60) egyenleteknek is fenn kell állnia a valós amplitudókra. A medence véges L lineáris kiterjedése azonban megszabja a lehetséges k_x értékeket, s ezzel a lehetséges frekvenciákat is.

Zárt medence (tó) esetén a teljes sebességnek mindkét végen el kell tűnnie, s ez csak úgy lehetséges, ha a medence hossza a félhullámhossz egész számú többsebőről: $k_x L = j \pi$, $j = 1, 2, \ldots$. A feltétel ugyanaz, mint egy zárt csöböl csőből hozzátartozó hullám esetén. Ebből a lehetséges állóhullám frekvenciák $c_n \pi j / L$, ahol az n index 1 vagy 0, attól függően, hogy belső vagy külső hullámról van szó. A lehetséges periódusidők ezért

\[T_j^{(n)} = \frac{2L}{c_n j}, \quad j = 1, 2, \ldots \]

(12.2)

A leghosszabb periódusú ($j = 1$) állóhullám tehát olyan haladó hullámokból áll össze, melyek a medencét oda-vissza éppen egy periódus alatt járják be (12.1a ábra). Egy 10 km hosszú tóban a leghosszabb állóhullám periódusideje $T_1^{(n)} = 2 \cdot 10^4 / c_n$ másodperc, ha a sebességet m/s-ban adjuk meg. Két egyforma, 10 m mély rétegből álló, $g' = 2 \cdot 10^{-3}$ m/s² redukált gravitációs gyorsulással jellemzett tóban $c_0 = 14$ m/s és $c_1 = 0,1$ m/s. A periódusidők ezért $T_1^{(0)} = 24$ perc és $T_1^{(1)} = 56$ óra. A belső állóhullám több mint két nagyságrenddel lassabban a külsőnél.

Ha a medence felülnyílt, mely pl. sekély torkolati öblöknek felel meg, akkor a teljes sebességnek csak az egyik végen kell eltűnnie, a másik végen lehet maximális. Ez azt jelenti, hogy a negyed hullámhossz, vagy ennek páratlan többsebőről férhetnek csak rá a medence hosszáról

\[{\text{1 Folytonos rétegezettesség esetén n más értékeket is felvehet hiszen tetszőleges számú normálmóduossal létezik.}} \]
12.1 ábra: Állóhullámok (seihek) medencékben. a) Zárt medence, a leghosszabb állóhullám \((j = 1)\). b) Nyitott medence palni ható gerjesztés hatására kialakuló állóhullám. A medence hossza közel esik a \(j = 2\) rezonancia hosszához. Az ábrák felületi alakot mutatnak, mely lehet akár a belső elválasztó felületé, akár a külső felszíné.

(mint a felig nyitott csővekben kialakuló hanghullámok esetén). A lehetséges frekvenciák ezért ekkor

\[
T_j^{(n)} = \frac{2L}{\alpha_n(j - 1/2)}, \quad j = 1, 2, \ldots
\]

(12.3)

Az állóhullámokat külső periodikus hatás gerjesztheti is (12.1b ábra). Ez legtöbbször az árapály, mely periodikus felszínhangozást határoz meg a nyitott peremen. Legyen a nyitott vég az \(x = L\) helyen, ekkor tehát az \(\omega\) frekvenciájú külső gerjesztés azt jelenti, hogy a peremen

\[
(\eta(L, t), \chi(L, t)) = (\eta_L, \chi_L) \sin \omega t
\]

(12.4)

adott valamilyen véges \(\eta_L, \chi_L\) amplitudókkal. A (12.1) megoldással ez csak akkor fér össze, ha a frekvencia és a hullámszám között fennáll a sekély folyadéka jellemző \(\omega = \omega_n\) összefüggés, és ha

\[
(\eta_0, \chi_0) = (\eta_L, \chi_L) \frac{1}{\cos k_x L}.
\]

(12.5)

A \(k_x\) hullámszámot a gerjesztési frekvencia szabja meg a \(k_x = \omega/\omega_n\) összefüggés szerint. Ez mutatja, hogy bizonyos medenceméretek esetén rezonancia alakulhat ki. Ekkor a medence belsejében létrejövő hullámok sokkal nagyobb amplitudójuk, mint a gerjesztés, hasonlóan a hangtani rezonancia esetéhez. Ideális folyadékban az \(\eta_0, \chi_0\) amplitúdó formálisan végtelen mértéken válhat, ha \(k_x L = (j - 1/2)\pi\), vagyis, ha a negyed hullámhossz páratlan számszor fér rá a medence hosszára. Ez éppen az a feltétel, hogy a gerjesztés \(\omega\) periódusá megegyezzen a lehetséges \(2\pi/T_j^{(n)}\) tőlengési frekvenciák valamelyikével. A rezonanciahossz tehát

\[
L_j^{(n)} = \frac{\omega}{\omega}(j - 1/2)\pi, \quad j = 1, 2, \ldots
\]

(12.6)

Az árapály félnapos periódusidejével, \(\omega = 1, 5 \cdot 10^{-4} 1/s\-mal számolva, a legkisebb \((j = 1)\) rezonanciahossz méterben mérve \(L_1^{(n)} = 10^4 \text{cm}\). A fenti medence-adatokkal a külső és a belső rezonancia hossz \(L_1^{(0)} = 140 \text{ km} \) és \(L_1^{(1)} = 1 \text{ km}\-nek adódik. Érdemes hangsúlyozni, hogy ez csak szükséges feltétel, hiszen a teljes rezonancióhoz a felszín- és sebességamplitudóknak is megfelelő arányban kell állniuk (??) szerint. Ezért a rezonancia pontos beállása még ideális esetben is valószínűtlen, de fokozott árapály-hullámzás több torkolati öböiben is megfigyelhető. Természetesen arról sem szabad megfeleldkezni, hogy 100 km kiterjedésű tavak esetén a Coriolishatás már nem hanyagolható el.
12.2 Kettős diffúziós konvekció

12.2.1 Általános megfontolások

A folyadék sűrűsége nemcsak a hőmérsékletnek lehet függvénye, hanem valamilyen oldott anyag koncentrációjának is. Gyakran a nagyobb koncentráció sűrűbbé teszi a közeget, tehát ellenkező hatással van a sűrűségre, mint a hőmérséklet. Általában kettős diffúziós konvekcióért beszélünk, ha az áramlás két különböző képpen diffundáló fizikai mennyiség térbeli változásának hatására indul be, és e két mennyiség ellenkező módon befolyásolja a sűrűséget. Az alapvetően új jelenség az, hogy egyes komponensek eltérő diffúziós sebessége miatt felfelé csökkenő sűrűségeloszlás is lehet instabil. Ez megfelelően hangzik, hiszen az egyszerű konvekció esetében egyetlen komponens (a hő) diffúziója meg a felfelé sűrűsödő közeg stabilizálására is képes viszkoztatás jelenlé tében.

A két komponens lehet különböző anyag (pl. cukor és só) koncentrációja, de a környezeti áramlások szempontjából legfontosabb alkalmazás a tengervíz, melyre a hőmérséklet és a sótartalom van ellenkező hatással. Ebben a speciális esetben termohalin (hőmérséklet és sótartalom által hajtott) konvekciótörést beszélünk. Noha jelölésünkkel elhez az esethez igazodunk, fontos hangsúlyozni, hogy az alapjelenségek minden kettős diffúziós folyamatra hasonlóak. A lekőrben például a vízpáratartalom lehet a hőmérsékletetől társuló másik komponens.

Az új dinamikai mennyiség a S sókoncentráció vagy szalinitás. Ez a dimenziótlan váltóezrelnében adja meg, hogy egy kg sós vízben hány kg sót van feloldva. Légkőri nyomáson a tengervíz átlagos sótartalma 35g/kg, vagyis a szalinitás S = 35 ezrelék. A felszínen S = 36, s legnagyobb értékét a leveredési tartomány alsó határán veszi fel, ahol 36,5 körüli, s a termoklin zona aljáig visszaesik az S = 35 értékre. A sós víz állapotegyenlete jó közelítéssel

\[\varrho = \varrho_0 (1 - \alpha(T - T_0) + \gamma(S - S_0)). \]

Itt \(\gamma \) a hőtávulási együttható analógonja, s azt adja meg, hogy mennyit nő a sűrűség az \(S_0 = 35 \) referenciaértéktől vett egységesnyi szalinitásnövekmény hatására. Értéke tengervízre \(\gamma = 7 \cdot 10^{-4} \).

Egy szárazféle szalinitás változás 7 ezrelékeny sűrűség változásra vezet.

A tengervíz (12.7) állapotegyenlette alapján magyarázható a sótartalom- és hőmérsékletkülön ségek által hajtott mélyőceán áramlás, a termohalin vízkörzés kialakulása. Az egész Atlanti-óceánban erősödő a párolgás mint a többi medencében, ezért a víz sótartalma itt a legnagyobb. Amikor ez az amúgyis sós víz az Északi-sark környékére érve a felszínen lehull, akkor sűrűsége már meghaladja a mélyebb szinteken levőet, s ezért lassan süllyed. Ez a hatás mozgatja az ún. nagy óceán szállítószalagot, mely a mélyre került vízet először a Dél-sark, majd omuet az Egyenlítő környékére sodorja, ahol az ismét a felszíne kerül. Az áramlás nagyon lassú, a felszínre kerülésig ezer év is eltelhet, de olyan nagy mennyiségű vízet mozgat, hogy alapvetően maghatározza a Föld hőháztartását, s ezzel éghajlatát.

Mivel a hőtávulás és a koncentráció hatása ellenkező előjelű, a legnagyobbak a kettős diffúziós esetek akkor adódnak, amikor mind a hőmérséklet-, mind a koncentráció-eloszlás azonos tendenciát mutat a magasság függvényében, mert ilyenkor gyengül égymás hatását.

A jelenség megértéséhez hangsúlyozandó, hogy a sókoncentráció maga is aktív változó, hiszen az \(S'' = S - S_0 \) szalinitáseltérés tér- és időfüggő, s kielégíti a

\[\frac{dS''}{dt} = \kappa_S \Delta S'' \]

\(^2\)Ennek oka az, hogy az Amerikai kontinens felől érkező levegő a Szákmáls-hegységen és más hegyvonulatokon átkelve nedvességének jelentős részét elveszti, s ugyanakkor az Afrika felől érkező levegő is igen száraz.
diffúziós egyenletet, ahol \(\kappa_S \) a só vízre vonatkozó diffúziós állandója. Természetesen az (5.108) hődiffúziós egyenlet is érvényben van, a két komponens diffúziójára tehát verseng egymással. Az instabilitás kialakulását elősegíti, hogy a só diffúziója sokkal lassabban a hő diffúziójánál:

\[
\kappa_S \ll \kappa. \tag{12.9}
\]

A konkrét számérték vízben \(\kappa_S = 1.4 \times 10^{-9} \text{m}^2/\text{s} \), tehát a hődiffúzió mintegy szárazor gyorsabb. A teljes sűrűségváltozás között az (12.7) állapotegyenlet szerint most mindkét komponens ad járuléket:

\[
\frac{\varrho'}{\varrho_0} = -\alpha T' + \gamma S'. \tag{12.10}
\]

A teljes hidrodinamikai egyenletrendszer a következő alfejezet mutatja be.

Az edény alja és teteje közötti jellegzetes \(\Delta S \) sótartalomkülönbséghez is hozzárendelhető egy dimenziótlan szám, az

\[
R_s = \frac{\text{szalinitású felhajtóerő}}{\text{viszkózus erő}}, \tag{12.11}
\]

\(\Delta S \) sótartalomkülönbség és \(R_s \) definíció szerint akkor pozitív, ha alul sósabb a folyadék. Az (5.110) Rayleigh-szám jelentése most annyiban módosul, hogy az csak a hőmérsékletkülönbségből adódó felhajtóerőt tartalmazza. Az áramlásmenetes állapot valamilyen \(R_a, R_s \) kritikus értéknél szűnik meg, de az igazán érdemes konvektív formák ennél jóval nagyobb értékekre alakulnak ki, s ott függetlenek a peremfeltételektől.

A konvektív folyamat függ viszont attól, hogy melyik komponens a destabilizáló. Vizsgáljuk először, mi történik, ha meleg és só folyadék kerül fölére, \(R_a, R_s < 0 \), de a sűrűség maga főfelé esőkön. A hőmérséklet okozta sűrűségváltozás szempontjából ez stabil eloszlás, tehát a só a destabilizáló tényező.

Mivel a sódiffúzió nagyon lassú, egy folyadékelem úgy tekinthető, mintha vekony hártával lenne körülveve, mely sócerét nem, csak hőcserét enged meg. A felső helyzetből kisérő felső félfelület miatt stabilra tételezhető, de sótartalma nem változik, ezért környezeténtől megnövezhessen lesz, s további szülő. Hasonló okokból az alulról felfelé elmozdított folyadékelem emelkedik. Az eredeti, negatív gradiens sűrűségeloszlás tehát a sótartalombeli inhomogenitás miatt instabil. Laboratóriumi megfigyelések mutatják, hogy a konvektív ún. só-ujjak megjelenéssel jár, melyek lassan felfelé nyúlnak keskeny sós nyalábok, s közöttük a kevesebb sós víz áramlik felfelé (12.2 ábra). A só-ujjak kialakulása lassú folyamat, mely csak gyakorlatilag nyugvó, vagy egyenletesen mozgó közegekben mehet csak vége.

Egyszerű megfontolással becsülhető a \(\Delta S \) szalinitáskülönbség hatására kialakuló só-ujjak \(\delta \) vastagságára, pontosan a vastagságu és hosszú \(\delta / h \) arányára. A közel stacionárius áramlásban az (5.108) hődiffúziós egyenlet advektív deriválta, melyben a függőleges áramlásban kapcsolatos járulék a jelentős, azonos nagyságrendű a diffúziós taggal: \(W/h \approx \kappa / \delta^2 \), ahol \(W \) a só-ujjak átlagos süllyedési sebessége. A viszkózus erő becsüléseben felhasználjuk, hogy az ujjak \(\delta \) vastagsága lányesse kisebb \(h \) hosszuknál. Az ujjak és a mellettük levő föláramló tartomány hőmérséklete közel azonos, ezért a felhajtóerő elsősorban a \(\Delta S \) sótartalom-különbségből adódik. Ezt kell kompensálnia a viszkózus erőnek, mely elsősorban a függőleges irányú sebességek okozta nyúrásból adódik: \(g\gamma \Delta S \approx \nu W / \delta^2 \). Mindkét feltétel összefüggve

\[
\frac{\delta}{h} \sim \left(\frac{\kappa \nu}{g\gamma \Delta S h^3} \right)^{1/4}. \tag{12.13}
\]
12.2 ábra: Só-ujjak képződése. a) Kezdeti fázis. b) Kifejlett állapot.

12.3 ábra: Ha hideg vízre enyhén sós vizet rétegzünk, akkor rövid időn belül néhány mm vastag só-ujjak képződnek.

Ha az ujjak hossza $h = 10$ cm és 1 ezerévenyi a sótartalom-különbség, akkor δ milliméter nagyságrendűnek adódik, a kísérletekkel összhangban (12.3 ábra).

Folytonos rétegzettés esetén a $\gamma g \Delta S / \Delta t$ mennyiség tekintetben $\Delta V = -g \Delta \rho / (\rho \Delta t)$ Brunt–Väisälä-frekvencia négyzetét a sótartalomkülönbségből adódó járuléknak. E járulék abszolutértéke azonban ugyanolyan nagyságrendű, mint a teljes N^2, hiszen a sótartalom-, és a hőmérsékletkülönbség észlelhető sűrűség változást okoz. Ezért (12.13) alapján írható, hogy

$$\delta \sim \left(\frac{\nu P}{N^2} \right)^{1/4}.$$ (12.14)

Az $N = 10^{-3}$ s$^{-1}$ értékével δ néhány cm-nek adódik.

A só-ujjak képződéséhez szükséges feltételek többféleképpen is megvalósulhatnak tengerekben. A napsugárzás hatására a felső vízréteg a trópusokon erősen felmelegszik, de a párolgás miatt sótartalmat is feldúsít. Hasonlóan, melegebb sós víz kerülhet felülre hideg folyótköllokat környékén, ahol az édesvíz a tengerfenékre folyik rá. A megfigyelések szerint a tengeri só-ujjak vastagsága néhány cm, hosszuk 30 cm és 1 m között van. Az ujjak jelentős só- és hőáramot biztosítanak a főlöttük és alattuk elhelyezkedő folyadékértégek között. A só-ujj képződés kezdeti szakaszához hasonló folyamatok zajlanak le az ún. mammatusz felhőkben, melyekben bugyrok kialakulása figyelhető meg a felhőszint alatt (12.4 ábra), néha pl. az üllő felhők alsó határán is.

A másik eredős eset az, amikor a meleg és sós folyadék kerül alulra, $Ra, Ra > 0$, de a teljes sűrűség továbbra is felfelé csökken. Ilyenkor nyilván a hőmérséklet a destabilizáló tényező.
12.4 ábra: Mammatusz felhők alacsony felhőréteg alján ujjasodásra utalnak [www-loa.univ-lille1.fr/-vanb/Nuages/mammatus_dark.gif].

12.5 ábra: Rétegképződés: Az eredetileg felfelé egyenletesen csökkenő hőmérséklet- és sótartalom hatására a kettős diffúziós stabilitás miatt közölváló homogén vízszintes rétegek alakulnak ki, melyekben termikus konvekción zajlik.

Egy szorosan kapcsolódó jelenség a jégtőmb olvadása a nála \(\Delta T \)-vel magasabb hőmérsékletű,
12.6 ábra: Jégréteg alatti tengervízben megfigyelt lépcsőzetes hőmérsékleteloszlás.

sótartalom által stabilan rétegzett folyadékba. Ez a folyamat zajlik a jéghelyek olvadásakor (melyek édesvízi jégből képződnek). A felolvadt édesvíz szabadulóan elhelyezkedő vízszintes rétegekben terjed szét (melyek között a meleg sós víz a jégtömb felé áramlik). A folyamatban létezik egy természetes távolságskála, az a távolság, mellyel a ΔT hőmérséklettöbbletű víz feljebb emelkedne az adott rétegzettségű folyadékbán. A sós folyadék hőmérsékletére melegedett édesvíz relatív sűrűsége $\alpha \Delta T$-vel csökken, s ez a sűrűség a $\Delta S/H$ szalinitásgradiensű folyadékban d elmozdulással feljebb található. Tehát $\alpha \Delta T = \gamma \Delta S d/H$, melyből $d = \alpha \Delta T H / (\gamma \Delta S)$. Az olvadáskor megfigyelt d rétegvastagság ezzel a hosszúsággal arányos, tehát a relatív vastagság

$$d = \frac{\Delta T}{H} \sim \frac{\alpha}{\gamma \Delta S} = \frac{Ra}{Rs} . \quad (12.15)$$

20 fokos hőmérsékletkülönbség és 40 ezrelékes szalinitáskülönbség esetén az Ra/Rs arány 1/14, azaz 20 cm vastag folyadékbán a rétegtávolság mintegy 3 cm (12.7 ábra).

12.7 ábra: Édesvízi jégtömb olvadása sógradienssel szтратifikált szobahőmérsékletű vízbe. Az olvadt víz néhány cm távolságra elhelyezkedő rétegekben terjed szét.
12.2.2 A kettős diffúziós konvekció egyenletei

A hőmérészeklet-módosítást a jellegzetes ΔT hőméréskletkülönbség egységében, a nyomást a $\theta_0 U^2$ egységben mérve, és a hővezetés által megszabott $U = \kappa/H$ sebességgel a

$$\mathbf{v} \rightarrow \frac{\kappa}{H} \mathbf{v}, \quad T'' \rightarrow \Delta TT'', \quad S'' \rightarrow \Delta SS'', \quad p'' \rightarrow \theta_0 \frac{\kappa^2}{H^2}, \quad t \rightarrow \frac{H^2}{\kappa}$$

általánosztást használjuk. Az utolsó kifejezés azt jelenti, hogy az időegység a hődiffúziós idő. Ezzel az (5.14) Navier-Stokes-egyenlet, az (5.108) hődiffúziós és a (12.8) sódiffúziós egyenlet a

$$\frac{d\mathbf{v}}{dt} = -\text{grad}p'' + Ra Pr T'' \mathbf{n} - Rs Pr S'' \mathbf{n} + Pr \Delta \mathbf{v},$$

$$\frac{dT''}{dt} = \Delta T'',$$

$$\frac{dS''}{dt} = \frac{\kappa \varepsilon}{\kappa} \Delta S'',$$

alakot ölti. Itt \(\mathbf{n}\) a függőleges egységvektor, és megjelenti a

$$Pr = \frac{\nu}{\kappa}$$

Prandtl-szám, a kinematikai viszkozitás és a hődiffúziós állandó hányadosa. A Prandtl-szám természetes közegénkre egyséngy rendű, vízben 7, levegőben 0,7 (a földköpenyben viszont 10^23).

A Navier-Stokes-egyenlet rotációját véve kapjuk az $\omega \equiv \text{rot} \mathbf{v}$ örvényvektor egyenletét. A 8.1 fejezetben láttottakat megismételjük

$$\frac{d\omega}{dt} = (\nu \text{grad})\mathbf{v} + Ra Pr T'' \mathbf{n} \times \text{grad}T'' - Rs Pr S'' \mathbf{n} \times \text{grad}S'' + Pr \Delta \omega.$$

A hőmérészklet- és szalunitaskülönbség örvényességet kelt, s végül ez indítja be a konvekciót. Inné látott, hogy legalábbis lineáris közeltetésben a Pr Prandtl-szám csak az időfüggést befolyásolja. Ezért nem jelenik meg a konvekció kialakulásának feltételeiben. A termikus konvekció egyenleteit az $S'' \equiv 0$ határesetekben kapjuk.

12.3 A potenciális sűrűség és potenciális hőmérésklet

Jelentős, több kilométeres mélység- vagy magasságkülönbségeket vizsgálva, mind a nyugvó levegő, mind a nyugvó víz sűrűsége érzékelhetően függ a függőleges koordinátától. A lehetséges egyensúlyi rétegzettségek között kitüntetett szerepet játszik a $\theta_0(z)$ sűrűségkülönbség, az ún adiabatikus sűrűségkülönbség (12.8 ábra). Ez a közeg olyan ideális termodinamikai egyensúlyi állapotának felel meg, melyben a folyadékkészek bármely csekély elmozdulása hőátadás nélkül. Ilyenkor tehát az egész közeg entropiája, pontosabban $\text{entropiás sűrűsége}$ állandó. Ebben a termodinamikai értelemben globális egyensúlyi állapotban két folyadékrész felcsavarása nem vezet semmilyen makroskopikus mozgáshoz. Az adiabatikus eloszlás tehát megadja, hogy a közeg valamely térfogatelemének sűrűsége hogyan változik, ha azt gravitációs törvény szerinti juttatjuk hőközés nélkül.

Az adiabatikus sűrűségkülönbség a $dp = -\theta_0 dz$ hidrosztatikai egyenletből kapható meg, felhasználva, hogy nyomás- és sűrűségváltozások között az adiabatikus (állandó entropiához tartozó) állapotegyenlet természetes kapcsolatot. A dp nyomásváltozást az ennek megfelelő sűrűségváltozassal helyettesítve: $dp = (\partial p/\partial \theta_0) d\theta_0$, azt kapjuk, hogy az adiabatikus sűrűséggradient azon a szinten, ahol a sűrűség értéke θ

$$\frac{d\theta_0(z)}{dz} = -\frac{\theta_0}{c^2} \left(\frac{\partial \theta}{\partial p} \right)_a = -\frac{\theta}{c^2},$$

244

A megjelent parciális derivált az adiabatikus kompresszibilitás és a sűrűség szorzata, mely egyben a közegbeli c hangsébsesség recíprokának négyzete. A légkörben az adiabatikus sűrűséggradienti felszíni értéke 0,1 kg/m³ kilométerenként, az oceanban 4 kg/m³ kilométerenként.

Hydrodynamikai folyamatok következtében természetesen az adiabatikustól eltérő \(\bar{g}(z) \) rétegezett eloszlás is kialkult hat. Ennek stabilitása egyszerűen meghatározható a \(\rho_0(z) \)-vel történő összehasonlításból. Ha a \(\bar{g}(z) \) eloszlás nagyobb gradiensú (12.8 ábra vastag vonal), akkor a rétegeztség stabil, hiszen adott pontból a folyadékelemet felfelé mozdiffa, annak sűrűsége \(\rho_0(z) \) szerint csökken, azaz nagyobb lesz új környezete sűrűségének. Elengedés után a folyadékelem visszatér eredeti helyzete felé. A \(\bar{g}_0(z) \)-nél kevésbé meredekkébb eloszlás esetén fordított a helyzet (12.8 ábra szaggatott vonal), az ilyen sztratifikáció instabil, nem marad fenn. Ebből az is következik, hogy a \(\rho_0(z) \) adiabatikus eloszlás hydrodynamikai szempontból marginális stabilitású.

A stabilitás erőssége most is a Brunt–Väisälä-frekvencia segítségével adható meg, a konkrét alak azonban eltér (5.4)-tól, hiszen az adiabatikus sűrűségváltozást is figyelembe kell venni. Az 5.1 fejezetben alkalmazott gondolatmenetet megismételve, a \(\bar{g}(z) \) rétegeztség esetén a \(z + \Delta z \) szintre juttatott részeckére ható felhajtóerő abból adódik, hogy a részecske sűrűsége az új szinten \(\rho_0(z + \Delta z) \), a környezeté viszont \(\bar{g}(z + \Delta z) \). A felhajtóerő által okozott gyorsulás

\[
g \frac{\bar{g}(z + \Delta z) - \rho_0(z + \Delta z)}{\bar{g}(z)} \approx g \frac{1}{\bar{g}(z)} \left(\frac{d\bar{g}(z)}{dz} - \frac{d\rho_0(z)}{dz} \right) \Delta z. \quad (12.23)
\]

Ha a sűrűség felfelé gyorsabban csökken, mint az adiabatikus, akkor akármilyen irányú is a \(\Delta z \) kitérés, a gyorsulás mindig vele ellentétes. Így kis kitérésekre harmonikus rezgés alakul ki az \(N(z) \) Brunt–Väisälä-frekvenciával, ahol

\[
N^2(z) = -g \frac{d\bar{g}(z)}{dz} \frac{d\rho_0(z)}{dz} = -g \frac{d\bar{g}(z)}{dz} + \frac{\bar{g}(z)}{c^2} \quad (12.24)
\]

A második átalakításban felhasználtak az adiabatikus gradiens (12.22) alakját. Az 5.1 fejezetben kapott (5.4) kifejezés tehát a teljes inkompresszibilitás (végelen hangsébsességű) határesetnek felel meg. Laboratóriumi kísérletekben az mindig jó közelítés, mert az ott előállított sűrűség-gradientejük jóval nagyobbak az adiabatikusnak. Általában igaz, hogy a közeg összenyomhatósága miatt a Brunt–Väisälä-frekvencia kisebb annál, amit teljes összenyomhatatlanságot feltételezve kapnánk.

Konkrét példaként tekintsük az ideális gáz esetét, mely a száraz légkör igen jó leírásának bizonyul. Az adiabatikus állapotegyenlet

\[
\frac{p}{p_0} = \left(\frac{\rho}{\rho_0} \right) \gamma, \quad (12.25)
\]
ahol $\gamma = c_p/c_v$ a két fajhő hányadosa, p_0 a felszínű nyomás, ϱ_0 pedig a felszínű sűrűség. A (12.22) egyenlet segítségével az adiabatikus gradiens

$$\frac{d\varrho}{dz} = \frac{\varrho^2 \varrho}{\gamma p}$$ \hspace{1cm} (12.26)

Ennek számértéke valóban 0,1 kg/m3 a felszínén.

A Brunt–Váisälä-frekvencia a (12.24) összefüggés alapján számolható. Annak érdekében, hogy elkerüljük az adiabatikus gradiens levonását, érdemes bevezetni egy olyan új sűrűségfogalmat, mely a valódi és az adiabatikus eloszlásnak megfelelő sűrűség különbségével arányos. Tekintsük az ideális gáz

$$\sigma \equiv p \left(\frac{p}{p_0} \right)^{-1/\gamma}$$ \hspace{1cm} (12.27)

ún. potenciális sűrűségét. A (12.25) állapotegyenletből ez éppen a p_0 referenciasűrűség. A potenciális sűrűség tehát az a sűrűség, melyet akkor kapunk, ha az adott p nyomású, ϱ sűrűségű gázt adiabatikusan a p_0 referenciasűrűség állapotba hozzuk. Közvetlen behelyettesítéssel látszik, hogy a Brunt–Váisälä-frekvencia kifejezhető, mint

$$N^2(z) = -\frac{\varrho}{\sigma(z)} \frac{d\varrho(z)}{dz}.$$ \hspace{1cm} (12.28)

Az ideális gáz Brunt–Váisälä-frekvenciáját tehát a szтратifikációhoz tartozó potenciális sűrűség logaritmus deriválja határozza meg. A rétegzettség akkor stabil, ha a potenciális sűrűség csökken a magassággal, s akkor marginális, ha a potenciális sűrűség állandó. A potenciális sűrűség tehát természetes általánosítása a hagyományos sűrűségnek összenyomható kőezekre.

Mivel a hőmérseklet könnyebben mérhető mennyiség, mint a sűrűség, érdemes átírni a fenti összefüggéseket a \bar{T} egyensúlyi hőmérsékleteloszlás gradiensre. Az ideális gáz általános állapotegyenlete szerint

$$\varrho = \frac{p}{RT},$$ \hspace{1cm} (12.29)

ahol $R = c_p - c_v$ a gázállandó. A levegő állandó nyomáson mért fajhője $c_p = 7/2R = 1010$ J/(kg fok). A (12.29) állapotegyenlet segítségével az egyensúlyi sűrűségregradiens $d\varrho/\varrho = d\bar{T}/dz(1/RT^3) - d\bar{T}/dz(p/RT^2)$, ahol ϱ a $\bar{\varrho}$ sűrűséghez tartozó nyomáson belül. A nyomásgradient a hidrosztatikai egyensúlyból kifejezve: $d\varrho/\varrho = -\bar{\varrho}$, s mivel $(\partial \varrho/\partial p) = 1/(\gamma RT)$, a Brunt–Váisälä-frekvencia (12.24) alakjára azt kapjuk, hogy

$$N^2(z) = \frac{\varrho}{\bar{T}(z)} \left(\frac{d\bar{T}(z)}{dz} - \frac{\varrho}{c_p} \right).$$ \hspace{1cm} (12.30)

Innét leolvasható, hogy az adiabatikus hőmérsékletgradiens ideális gázra

$$\frac{dT_a}{dz} = -\frac{\varrho}{c_p}.$$ \hspace{1cm} (12.31)

Ennek számértéke a légköri hétkőznapi tapasztalathól ismert kilométerenkénti 10 fokos adiabatikus hőmérsékletgradieíntet adja. A rétegzetés akkor stabil, ha a hőmérsékletgradiens ennél kevésbé negatív (12.9 ábra vastag vonal). Ekkor ugyanis a felféle mozditott légcsomag hidegebb és ezért sűrűbb lesz, mint környezete, s ezért magától lefelé mozdul. Vegyük észre, hogy az izoterm atmoszféra is stabil. A felféle melegedő levegőcsempé (inverziós réteg) még stabilabb.

Az adiabatikus gradiens explicit levonása helyett ismét érdemes egy új, hőmérséklet jellegű mennyiséget bevezetni, a

$$\theta \equiv T \left(\frac{p}{p_0} \right)^{1/\gamma - 1}.$$ \hspace{1cm} (12.32)
12.9 ábra: A rétegzettség stabilitásának feltétele írásban, a légkörben. A hőmérséklet-
gradiente a z vonalnál (vékony vonal) nagyobbak kell lennie (vastag vonal), s lehet pozitív is. A szaggatott vonal stabil rétegzettséghez tartozik.

potenciális hőmérséklet. Ez az a hőmérséklet, melyet akkor kapunk, ha az adott \(\rho \) nyomású, \(T \) sűrűségű gáz adiabatikusan a \(\rho_0 \) referencia nyomásra hozzuk. Közvetlen behelyettesítéssel kapjuk, hogy a Brunt–Váisälä-frekvencia kifejezhető az egyensúlyi \(\theta(z) \) potenciális hőmérséklettel:

\[
N^2(z) = \frac{g}{\theta(z)} \frac{d\theta(z)}{dz}.
\]
(12.33)

Az eredmény következik abból is, hogy a potenciális sűrűség és potenciális hőmérséklet szorozata
(12.34) és (12.37) szerint \(\sigma = \rho_0 R \) állandó. A rétegzettség akkor stabil, ha a közeg potenciális
hőmérséklete nő a magassággal, s marginális, ha a potenciális hőmérséklet helyfüggetlen. A 12.1
táblázat a hagyományos és a potenciális mennyiségek tipikus légkörű eloszlását mutatja.

<table>
<thead>
<tr>
<th>(z) (km)</th>
<th>(\bar{\rho}) (kg/m(^3))</th>
<th>(\bar{\sigma}) (kg/m(^3))</th>
<th>(\tilde{T}) (fok)</th>
<th>(\tilde{\theta}) (fok)</th>
<th>(\bar{p}) (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.22</td>
<td>1.22</td>
<td>15</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1.01</td>
<td>1.18</td>
<td>2</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>0.82</td>
<td>1.15</td>
<td>-11</td>
<td>27</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>0.66</td>
<td>1.13</td>
<td>-24</td>
<td>36</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>0.53</td>
<td>1.09</td>
<td>-37</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>0.41</td>
<td>1.05</td>
<td>-50</td>
<td>55</td>
<td>26</td>
</tr>
</tbody>
</table>

12.1 táblázat: A sűrűség, hőmérséklet, potenciális változataik és a nyomás magasságfüggése
száraz levegőben. A potenciális hőmérséklet nő, annak ellenére, hogy a hagyományos hőmérséklet
csökken a magassággal. Ez a légkör stabilitását fejezi ki.

Mind a potenciális sűrűség, mind a potenciális hőmérséklet bevezetése olyan új állapotjelzőkre
vezet, melyek adiabatikus változásokban állandók. A \((\bar{\rho}, \bar{\sigma}), (\tilde{T}, \tilde{\theta}) \) síkon ez olyan transzfomációit
jelent, mely az adiabatikus görbélet függőleges egyenesekbe viszi át. Különösen áttekinthető
képre jutunk a hőmérséklet-inverzió esetében (12.10 ábra).

Általános közeg állapotegyenlete nem hozható olyan kompakt formára, mint az ideális gázé.
Ilyenkor a potenciális sűrűség általános definíciója:

\[
\bar{\sigma} = \bar{\rho}(p) - \int_{p_0}^{p} \left(\frac{\partial \bar{\rho}}{\partial \rho} \right)_{\sigma} dp',
\]
(12.34)

állandó entrópia mellett. A \(\bar{\rho} \) sűrűségből tehát éppen az adiabatikus kompresszibilitással kapcsolatos
járulékok vonjuk le, s ezzel eltávolítjuk a nyomásfüggést.\(^3\) Mivel \(\bar{\sigma} \) ismerete egyenértékű az

\(^3\)A 5.2 és 5.13 ábrának valójában a potenciális sűrűséget mutatják.
12.10 ábra: Az ideális gáz potenciális hőmérsékletére történő átterelés a \overline{T}, \bar{z} sűrű olyan transzformációjának felel meg, mely az adatbázisak függőleges egyenesekhez viszi át. Az inverziós réteget mindkét ábrázolásban jelöltük.

entrópiás sűrűség megadásával, a felírásban jelöltük, hogy az adatbázis deriválás állandó potenciális sűrűség melletti deriválásnak felel meg. A potenciális sűrűség továbbra is az a sűrűség, melyet a közeg felvész, ha a p nyomású állapotból a p_0 nyomású állapotba adatbázisban átvisszuk. Az adatbázis kompressibilitás kapcsolatos a hangsebességgel, s ezért a potenciális sűrűség egyértelműen meghatározható a hangsebesség nyomásfüggésének ismertetésében. A vízre vonatkozó eredmény pl. bonyolult közelítő kifejezésekkel is megadható. Mi itt táblázatos formában mutatjuk be a potenciális sűrűség előreelozásának egy példán (12.2 táblázat).

A potenciális sűrűség általános kifejezését a mélység szerint deriválva és (12.22)-t használva

$$\frac{d\bar{\theta}}{dz} \left(1 + \int_{p_0}^{p} \frac{\partial}{\partial \bar{\theta}} \left(\frac{\partial g}{\partial \bar{\theta}} \right) d\bar{\theta} \right) = \frac{d\bar{\theta}(z)}{dz} + \bar{\theta} \left(\frac{\partial g}{\partial \bar{\theta}} \right)_{a}. \quad (12.35)$$

Mivel a bal oldali zárójében (12.34) szerint a sűrűség potenciális sűrűség szerinti $(\partial \bar{\theta}/\partial \bar{\theta})_{p}$ deriváltja áll állandó nyomás mellett, a (12.24) Brunt–Väisälä-frekvencia négyzetére azt kapjuk, hogy

$$N^2(z) = -\frac{g}{\bar{\theta}(z)} \left(\frac{\partial \bar{\theta}}{\partial \bar{\theta}} \right) d\bar{\theta}(z) \frac{d\theta}{dz}. \quad (12.36)$$

A Brunt–Väisälä-frekvencia frekvencia négyzetehhez tehát mindig arányos a potenciális sűrűség gradienivel. A $(\partial g/\partial \bar{\theta})_{p}$ derivált általánosan nem adható meg expliciten, a konkrét közegtől függ. Víz esetén nem sokkal tér el 1-től. A táblázatból az is látszik, hogy a sűrűség és a potenciális sűrűség növekménye még 4 km mélységben sem nagyon különbözik.

A potenciális hőmérséklet általános definiója analóg módon:

$$\theta = T(p) - \int_{p_0}^{p} \left(\frac{\partial T}{\partial \bar{\theta}} \right)_{p} d\bar{\theta}, \quad (12.37)$$

állandó entrópia mellett. Ez a mennyiség a $(\partial T/\partial \bar{\theta})_{p}$ adatbázis hőmérsékletgradiens nyomásfüggésének méréséből kaptható meg bármely közegben. A vízre vonatkozó értékek a táblázatból leolvashatók. A potenciális hőmérséklet nem tartalmazza a hagyományos hőmérséklet nyomásból adódó járulékát, s ezért csak az entrópia függvénye. Általános közeg esetén már nem igaz, hogy a potenciális hőmérséklet és a potenciális sűrűség szorzata állandó. Sőt, a potenciális hőmérséklet gradiens nem kapcsolatos közvetlenül a Brunt–Väisälä-frekvenciával.

A potenciális hőmérséklet és a potenciális sűrűség egymástól nem függetlenek, ezért adott esetben el kell döntenünk, hogy melyik mennyiségel dolgozunk. Mindenképpen a hagyományos sűrűség (vagy hőmérséklet) helyett választunk új változót. Akármelyiket valasztjuk is, az új
$z \text{ (km)}$ $\bar{\rho} - \rho_0 \text{ (kg/m}^3\text{)}$ $\bar{\sigma} - \rho_0 \text{ (kg/m}^3\text{)}$ $\bar{T} \text{ (fok)}$ $\bar{\theta} \text{ (fok)}$ $\bar{p} \text{ (100 kPa)}$

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.4</td>
<td>25.4</td>
<td>7.5</td>
<td>7.5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>32.1</td>
<td>27.4</td>
<td>3.2</td>
<td>3.1</td>
<td>1009</td>
</tr>
<tr>
<td>2</td>
<td>37.1</td>
<td>27.7</td>
<td>1.9</td>
<td>1.8</td>
<td>2025</td>
</tr>
<tr>
<td>3</td>
<td>41.7</td>
<td>27.8</td>
<td>1.7</td>
<td>1.4</td>
<td>3044</td>
</tr>
<tr>
<td>4</td>
<td>46.2</td>
<td>27.8</td>
<td>1.6</td>
<td>1.3</td>
<td>4068</td>
</tr>
</tbody>
</table>

12.2 táblázat: A sűrűség, hőmérséklet, potenciális változataik és a nyomás jellegzetes mélységfüggése tengervízben (a sótartalom közel állandó). A ρ_0 sűrűség itt az édes víz 1 kg/m^3 normál sűrűsége. A potenciális hőmérséklet gradiens nagyobb, mint a potenciális sűrűsége, de csak az utóbbi kapcsolatos a Brunt–Väisälä-frekvenciával.

mennyiséggel a rendszer entropiasűrűségét mérjük. A teljesség kedvéért megjegyezzük, hogy a potenciális mennyiségek függnek a közegben elosztott anyagok koncentrációjától is, mint pl. a légkörben a vízgöztartalomtól, vagy a tengervízben a sótartalomtól. Jelenlévő fontossága érzékelhető abból, hogy a telített vízgözt tartalmazó levegő hőmérsékletének csökkenési üteme nem 10 fok hanem csak 5 – 6 fok kilométerenként. Az entópiasűrűséggel való kapcsolat tehát csak állandó koncentrációk esetén közvetlen.

A potenciális termodinamikai mennyiségekre való áttérés sokszor hasznos rendszer dinamikája szempontjából is. Az ideális áramlás során ugyanis hőátadás nem történik, s ezért az entrópiát állandó. Az áramló közeg bármely részecskéjének potenciális sűrűsége vagy potenciális hőmérséklete ezért a mozgás során állandó, σ vagy θ tehát hidrodinamikai mozgásállandók mindaddig, amíg a disszipatív folyamatok elhanyagolhatók (és jelentős koncentrációváltozások, pl. csapadékképződés nem következik be). A nagyskálájú mozgások az állandó potenciális sűrűségű ill. potenciális hőmérsékletű felületek mentén történekl. Ezek a felületek természetesen nem mindig esnek egybe a lokális vízszintes felülettel, de térben lassan változnak. Így új megvilágítást nyer az a felismerés, hogy a nagyskálájú légkör és óceáni mozgások kétdimenziósak.
13. fejezet

A forgatás és rétegzés együttes hatása sekély folyadékra

13.1 Partmenti feláramlások

Ha a partvonal mentén olyan szél fúj, melynek következtében az Ekman-transzport a partvonatra merőlegesen kifelé mutat, akkor feláramlás indul meg. Kétrétegű közegben ennek hatása sokkal nagyobb a belső felszín elmozdulására, mint a külső felületre. Az egyszerűség kedvéért (az y tengely menti) függőleges partot, csak x-től függő áramlást és felszín alakokat feltételezve (13.1 ábra), az egyenletek felírhatók. Új elem a felszínű szélvihar, mely a szél irányára merőlegesen, azaz az északi felénk ($f_0 > 0$) a pozitív y irányba mutat, s melyet térben és időben is állandónak tekintünk: $\tau_y = \tau_0$. A 4.5 fejezetben látottak szerint ez a $\tau_0/(\rho_0 H_1)$ gyorsulás megjelenésére vezet a H_1 átlagos vastagságú felső szint v_1 sebességkomponensének egyenletében.

![13.1 ábra: Part menti feláramlás a partra merőlegesen a tenger felé mutató nyírás esetén kétrétegű közegben az északi felénk. Állandó nyírás esetén a belső felület időben egyenletesen emelkedik. Ezzel párhuzamosan a felső rétegben a szél felé párhuzamos, alul ezzel ellentétes áramlás jön létre, mely időben szintén egyenletesen erősödik.](image)

Feltéve, hogy az áramlás lassú, a teljes időderivált akban az advektív tag elhagyható. Szélvihar hiányában a folyadék nyugalmi állapotban van, a sebességek eltűnnek és a rétegyvastagságok a konstans H_1, H_2 értékek. A nyugalmi állapotból történő kis eltéréseket leíró (6.13) Euler-egyenletek

\[
\frac{\partial u_1}{\partial t} = f_0 v_1 - g \frac{\partial \eta}{\partial x}, \quad \frac{\partial v_1}{\partial t} = -f_0 u_1 + \frac{\tau_0}{\rho_0 H_1},
\]

(13.1)
\[
\frac{\partial u}{\partial t} = f_0 v_2 - g \frac{\partial v_2}{\partial x} + g' \frac{\partial h}{\partial x}, \quad \frac{\partial v_2}{\partial t} = -f_0 u_2,
\] (13.2)

ahol a belső felszínű alak helyett a \(h \approx H_1 - \chi \) felső rétegvastagságot használjuk. Ugyanebben a közelítésben a (6.14) kontinuitási egyenletek

\[
\frac{\partial h}{\partial t} = -H_1 \frac{\partial u_1}{\partial x}, \quad -\frac{\partial h}{\partial t} = -H_2 \frac{\partial u_2}{\partial x}
\] (13.3)

alakúak. Az Euler-egyenletek kivonásával az \(u \equiv u_1 - u_2 \) relatív sebességre

\[
\frac{\partial u}{\partial t} = f_0 v - g \frac{\partial h}{\partial x}, \quad \frac{\partial v}{\partial t} = -f_0 u + \frac{\tau_0}{\theta_0 H_1}
\] (13.4)

Ebből látszik, hogy a felső rétegvastagság egyenletében az átlagos rétegvastagságok harmonikus középe jelenik meg:

\[
\frac{\partial h}{\partial t} = \left(\frac{1}{H_1} + \frac{1}{H_2} \right) \frac{\partial u}{\partial x}
\] (13.5)

Ez máris arra utal, hogy a problémában a (6.18) belső Rossby-sugár lesz a jellemző hosszúság-paraméter.

Az egyenletek hasonlóak a 11.5 fejezetben tárgyalt viharhullámokéhoz. Mivel a nyírás állandó, a hidrodinamikai gyorsulás a partonál mentén nem nulla. Az arra merőleges áramlás viszont lehet stacionárius. Az \(u \) komponens időbeni állandóságát feltételezzé, a kontinuitási egyenletből azt kapjuk, hogy \(h \) időben lineárisan változik, a \(v \) komponens Euler-egyenletéből pedig azt, hogy \(v \) is. A nyírás tehát egyenletesen erősíti a parttal párhuzamos áramlást (és a mélytengeri elénkülást) és egyben állandó belső szintemelkedést biztosít. A lineáris időfüggő leválása és közönséges differenciálegyenlet-rendszer kapunk, mely az \(u(x = 0) = 0 \) feltétellel megoldható.

A teljes megoldás:

\[
u = \frac{\tau_0}{f_0 \theta_0 H_1} \left(1 - e^{-x/R} \right), \quad v = \frac{\tau_0 t}{\theta_0 H_1} e^{-x/R},
\] (13.6)

\[
h = H_1 - \frac{\tau_0 t}{R f_0 \theta_0} H_2 e^{-x/R}.
\] (13.7)

A nébilli lecseggést a belső Rossby-sugár határozza meg, a kelet-nyugati sebességkomponens amplitudóját a nyírás, az észak-déli és a szintemelkedését pedig a \(\tau \) nyírás impulzus. Átlagos \(\tau = 0,1 \) N/m² nyírás erősség, \(g' = 0,03 \) m/s² redukált gyorsulás és \(H_1 = 100 \) m, \(H_2 \gg H_1 \) második erősséget esetén a feláramlás \(dh/dt \) erőssége a part mentén \(5 \) m naponként. Peru partja mentén tipikusan felszáló áramlást figyelhető meg. A déli szél gyengülése miatt a hideg víz feláramló erőssége csökkenthet. Az ezzel járó felmelegedés tekinthető az El Nino-jelenség kialakulásában az első lépésnek.

Annak ellenére, hogy az eredmény a lineáris közelítés keretén belül érvényes, érdemes első tájékozódásaként hosszabb időkre is alkalmazni, amikor a belső felszínű elmozdulás már nem kiesi. Az elválasztó felület a függőleges part mentén állandóan emelkedik, míg egyszer eljut a külső felszínre (13.2a ábra). Ezután bekövetkezik az, hogy az alsó sűrű közeg a part mellett teljesen felszíne kerül, s a parttal valamilyen \(x_c \) távolságban megjelenik egy front (13.2b ábra). Ha a szél azután elül, a front stacionárius maradhat, hiszen éppen ez az exponenciálisan leszegő alak megoldása a geoestrofikus egyenletnek is. Ekkor \(h(x) \) a partonál mellett formálisan negatív, s \(x_c \) az a feltétel határozza meg, hogy ott \(h(x_c) = 0 \). A (13.7) egyenletből a termoklin zónára jellemző \(H_2 \approx H \) esetben

\[
e^{-x/R} = \frac{\tau_0 t}{R f_0 \theta_0 H_1},
\] (13.8)

A Rossby-sugárhoz képest kis part menti \(x_c \) távolságokra

\[
x_c = x_{Ek} - R',
\] (13.9)

252
ahol \(x_{EK} = \tau_0 f/(\varrho_0 f_0 H_1) \) az ún. Ekman-elmozdulás, azaz az a távolság, melyet a nyírás álalt okozott \(\tau_0/(\varrho_0 f_0 H_1) \) geostrofikus sebességgel mozgó folyadék (1. 4.4, 4.5 fejezet) \(t \) idő alatt megtétez. Az eredmény arra utal, hogy a feláramlással kapcsolatos front úgy alakul ki, mintha először a part menti függőleges választőfelület az \(x_{EK} \) Ekman-elmozdulással odébblődne, s utána következne be a 6.7 fejezetben vizsgált geostrofikus kiegyenlítődés (amikor a front helyzete Rossby-sugárnyit mozdul a part felé).

13.2 ábra: Part menti feláramlás fázisai hosszú ideje egyenletesen fújó szél esetén. Eleinte a belső felszín csak keveset emelkedik (előző ábra). Később az elválasztó felület eléri a felszín a partnál (a), majd attól eltávolodik. Ekkor a part mentén már hideg víz terülel el, s a felszínén megjelenik egy front. Úgy tekinthető, mintha a szél az \(x_{EK} \) Ekman-távolagságra tolta volna el a teljes felső réteget (szaggatott vonal), majd az a geostrofikus egyensúly beállása során venné fel a part felé fokozatosan keskenyedő mélységi alakját.

Amennyiben a nyírás időben periodikus, de térben állandó, a feláramlás erőssége is periodikusan változik. Ha a nyírás térbeli periodicitást is mutat, akkor a feláramlás gerjesztett belső Kelvin-hullámok formájában jelenik meg a part belső Rossby-sugárnyi környezetében. Ha a gerjesztési frekvencia meghaladja a helyi \(f_0 \) Coriolis-paraméter értékét, akkor a válasz már nem marad lokalizált, hanem a parttól elszakadó belső Poincaré-hullámok gerjesztődnek.

13.2 A kvázigeoströfikus egyenlet folytonos függőleges rétegzettségű közegben

Tekintsünk három, egyforma \(\Delta H \) nyugalmi vastagságú folyadékréteget, melyek közül a legfelső \((i = 1) \) \(\varrho_0 \), a középső \((i = 2) \) \(\varrho_0 + \Delta \varrho \), az alsó \((i = 3) \) pedig \(\varrho_0 + \Delta \varrho + \Delta \varrho' \) sűrűségű. A függőleges irányban érvényesülő hidroszatifikai egyensúly miatt a nyomások az egyes rétegekben tetszőleges \(h_i, i = 1, 2, 3 \) pillanatnyi rétegvastagság esetén:

\[
p = \varrho_0 g(h_1 + h_2 + h_3 - 2), \quad \text{ha} \ z > h_2 + h_3, \quad (13.10)
\]
\[
p = \varrho_0 g h_1 + (\varrho_0 + \Delta \varrho) g(h_2 + h_3 - 2), \quad \text{ha} \ h_2 + h_3 > z > h_3, \quad (13.11)
\]
\[
p = \varrho_0 g h_1 + (\varrho_0 + \Delta \varrho) g h_2 + (\varrho_0 + \Delta \varrho + \Delta \varrho') g(h_3 - 2), \quad \text{ha} \ h_3 < z. \quad (13.12)
\]

A teljes nyomást a nyugalmi esethez tartozó hidroszatikus (szögeletes zárójelek) és a dinamikai nyomásra bontva az egyes tartományokban:

\[
p = \varrho_0 g(h_1 + h_2 + h_3 - 3\Delta H) + [\varrho_0 g(3\Delta H - z)], \quad (13.13)
\]

253
\[p = \varrho_0 g (h_1 + h_2 + h_3 - 3\Delta H) + \Delta \varrho_0 g (h_2 + h_3 - 2\Delta H) + \left[\varrho_0 \Delta H + \left(\varrho_0 + \Delta \varrho \right) g \left(2\Delta H - z \right) \right], \]

\[p = \varrho_0 g (h_1 + h_2 + h_3 - 3\Delta H) + \Delta \varrho_0 g (h_2 + h_3 - 2\Delta H) + \Delta \varrho g (h_3 - \Delta H) + \left[(2\varrho_0 + \Delta \varrho) \Delta H + (\varrho_0 + \Delta \varrho + \Delta \varrho') (\Delta H - z) \right]. \]

(13.14)

(13.15)

Mivel a \(\varphi' \) dinamikai nyomással készült \(\varphi'g/\varrho_0f_0 \) adja a geosztrofikus egyensúly áramlás függvényét, az egyes rétegekben

\[\psi_1 = \frac{\varrho}{\varrho_0} (h_1 + h_2 + h_3 - 3\Delta H), \]

\[\psi_2 = \frac{\varrho}{\varrho_0} (h_1 + h_2 + h_3 - 3\Delta H) + \frac{\Delta \varrho}{\varrho_0} \frac{g}{f_0} (h_2 + h_3 - 2\Delta H), \]

és

\[\psi_3 = \frac{\varrho}{\varrho_0} (h_1 + h_2 + h_3 - 3\Delta H) + \frac{\Delta \varrho}{\varrho_0} \frac{g}{f_0} (h_2 + h_3 - 2\Delta H) + \frac{\Delta \varrho}{\varrho_0} \frac{g}{f_0} (h_3 - \Delta H). \]

(13.16)

(13.17)

Az alsó rétegvastagságok áramlás függvényel kifejezett alakjai ebből:

\[h_3 - \Delta H = \frac{f_0 \varrho_0 \Delta H}{\Delta \varrho g} \psi_3 - \psi_2, \]

és

\[h_2 - \Delta H = -f_0 \left(\frac{\varrho_0 \Delta H}{\Delta \varrho g} \psi_1 - \psi_2 - \frac{\varrho_0 \Delta H}{\Delta \varrho g} \psi_2 - \psi_3 \right). \]

(13.18)

(13.19)

Megjelennek az áramlás függvény magasság szerinti diszkret deriváltjai, az elsőttük álló tényezők pedig a szomszédos szintek közötti Brunt–Väisälä-frekvencia négyzetének reciprokait tartalmazzák. A tipikus középső szint potenciális örvényessége (6.71) szerint a kvázigeosztrofikus közöltésben

\[q_2 = \frac{\zeta_2 + f}{h_2} \Delta H = \frac{\zeta_2 + f}{\Delta H + h_2 - \Delta H} \Delta H = \zeta_2 + f - \frac{f_0}{\Delta H} (h_2 - \Delta H). \]

(13.20)

Mivel a \(h_2 - \Delta H \) szintingadozás (13.19) szerint már két diszkret derivált különbsége, s ez (13.20)-ban újabb átlagos távolsággal osztódik, a végeremdénben kétszeres derivált szerepel. A folytonosan rétegzett határesetben a \(\psi_i(x, y, t) \) áramlás függvények együttese az egyetlen \(\psi(x, y, z, t) \) mélységfüggő áramlás függvénye meg át. A folytonos rétegzettsghez tartozó potenciális örvényesség az áramlás függvény mellett a

\[q = \Delta \psi + f + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2(z)} \frac{\partial \psi}{\partial z} \right) \]

(13.21)

képzőlatban áll. Itt a Laplace-operátor, mint általában a kvázigeosztrofikus közöltésben, csak a vízszintes koordinátáakra hat.

Mivel bármelyik szintben a potenciális örvényesség mozgásállandó, \(dq_i/dt = 0 \), a magasságfüggő alakban a megmaradást a

\[
\left(\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right) \Delta \psi + \beta y + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2(z)} \frac{\partial \psi}{\partial z} \right) = 0
\]

(13.22)

összefüggés, a folytonosan rétegzett közeg kvázigeosztrofikus egyenlete fejezi ki.
A ψ áramlási függvény ismerete a teljes hidrodinamikai probléma megoldását jelenti. Az áramlási függvény az adott szintbeli dinamikai nyomással arányos:

$$p' = \varrho_0 f_0 \psi,$$

éppúgy mint a homogén esetben, de most a nyomás magasságfüggést is mutat. A (6.24) hidrosztatikai egyenlet szerint az egyensúlyi sztratifikációtól mért ϱ' sűrűségingadozás:

$$\varrho' = -\frac{\varrho_0 f_0}{g} \frac{\partial \psi}{\partial z}.$$

Az áramlási függvény magasság szerinti deriváltja tehát a sűrűségingadozást adja. Minden egyes rétegben a sekélyfolyadék tulajdonság miatt a feláramlási sebesség csak lineárisan függhet a magasságtól, s a réteg tetején mért sebesség éppen dh_i/dt-vel nagyobb, mint a réteg alján, ahol a d/dt a kétdimenziós teljes időderivált. A (13.18)-(13.19) egyenletek összefüggésből látszik, hogy a középső szint tetején mért $d(h_2 + h_3)/dt$ sebesség az ottani áramlási függvény magasság és idő szerinti deriváltjával arányos. A függőleges sebesség tehát

$$w = -\frac{f_0}{N^2(z)} \frac{d \psi}{dz}.$$

A (13.24) egyenlettel összevetve ez éppen a (6.12) sűrűségegyenlet.

Vizsgáljuk meg, mik a kvázigeozetrofikus közelítés feltételeit! A potenciális örvényesség (6.71) kvázigeozetrofikus alakjában kifejezésre jut az a feltevés, hogy az elválasztott felületek $(h_i - \Delta H)/\Delta H$ relatív vastagsággingadozása kicsi. A középső, $i = 2$ szinten ez a mennyiség a magasságfüggő áramlási függvény második z szerinti deriváltjával arányos, ezért állandó Brunt–Väisälä-frekvencia mellett érvényesnek kell lennie az

$$\left| \frac{f_0}{N^2} \frac{\partial^2 \psi}{\partial^2 z} \right| \ll 1$$

megszorításnak. A (13.24) egyenlet szerint ez ekvivalens a

$$\frac{g}{N^2 \varrho_0} \left| \frac{\partial \varrho'}{\partial z} \right| \ll 1$$

feltétellel. A Brunt–Väisälä-frekvencia (5.4) alakját felhasználva,

$$\left| \frac{\partial \varrho'}{\partial z} \right| \left| \frac{d \varrho}{dz} \right| \ll 1.$$

Ez azt jelenti, hogy a dinamikai sűrűség magasság szerinti változásai sokkal kisebbek a nyugalmi sűrűséggradiensnél. Az állandó sűrűségfelületek csak keveset térhetnek el a vízszintes siktól. Mivel kvázigeozetrofikus közelítésben a relatív vastagsággingadozás Rossby-szám rendű, azt kapjuk, hogy

$$\left| \frac{\partial \varrho'}{\partial z} \right| \approx Ro \left| \frac{d \varrho}{dz} \right|.$$

A $\Delta \varrho'$ dinamikai sűrűségingadozásoknak a geozetrofikus dinamikában Rossby-számzor kisebbnek kell lenniük a $\Delta \varrho$ nyugalmi sűrűségváltozásnál ugyanazon a magasságkülönbségen.

Érdemes a (13.22) egyenlet dimenziótlan alakját is megadni állandó N mellett. A vízszintes és függőleges távolságokat L, ill. H egységekben, az időt L/U egységből mérve, és kihasználva, hogy az áramlási függvény dimenziója UL, azt kapjuk, hogy

$$\frac{d}{dt} \left[\Delta \psi + \frac{Be}{Ro} y + \frac{1}{Bu} \frac{\partial^2 \psi}{\partial^2 z} \right] = 0.$$

(13.30)
Itt megjelent a (6.37) Burger-szám. Ennek szemléletes jelentése a potenciális örvényesség (13.21) alakjából olvasható le. Az utolsó tag a rétegvastagodásból, azaz a folyadékhenger megnyúlásából adódó örvényességjárulék. Nagyságrendje \(f_0^2 U L / (N^2 H^2) \). A \(\zeta \) relatív örvényesség \(U / L \) rendű, így

\[
Bu = \frac{N^2 H^2}{f_0^2 L^2} = \frac{\text{relatív örvényesség}}{\text{megnyúlás} \, örvényesség}. \tag{13.31}
\]

A Burger-szám tehát a vízszintes sziklai mozgásból és a függőleges megnyúlásból adódó örvényességeket viszonyít méri. A kvázigeosztrófikus dinamikában mindkettő egyformán fontos, ezért

\[
Bu \approx 1, \tag{13.32}
\]
a már korábban (6.4 fejezet) is megfogalmazott feltétellel összhangban. Mivel \(Be = \beta L / f_0 \) a dimenzióltalan \(\beta \) paraméter, melyről már a 3.3 fejezetben feltettük, hogy Rossby-szám nagyságrendű, azt látjuk, hogy a (13.30) egyenlet minden tagja egységnyi. A földi viszonyokra a Burger-szám ténylegesen egység körüli, ezért a kvázigeosztrófikus egyenlet jó közelítéssel alkalmazható a nagyskálájú környezeti áramlások vizsgálatára. A homogén közeg egyetlen hasonlóan a leglassúbb mozgásokat írja le (melyek karakterisztikus ideje legalább néhány nap), tehát kiszűri a belső Poincaré-, ill. Kelvin-hullámokat.

13.3 Rossby-hullámok folytonos rétegzettség esetén

A kis amplitudójú Rossby-hullámok állandó Brunt-Väisälä-frekvencia esetén a linearizált (13.22) egyenlet, az a

\[
\frac{\partial}{\partial t} \left(\Delta \psi + \frac{f_0^2}{N^2} \frac{\partial^2 \psi}{\partial x^2} \right) + \beta \frac{\partial \psi}{\partial x} = 0 \tag{13.33}
\]

eyenlet megoldásai. Tekintsünk először egy felül merev lappal lezárta \(H \) mélységű folyadékot. A \(w \) függőleges sebességek ekkor a \(z = 0 \) és a \(z = H \) szinten is el kell tűnnie, mely a linearizált (13.25) egyenlet szerint csak akkor lehetséges, ha az áramlást függvény \(z \) szerinti deriváltja azonosan zérus mindkét peremen. Ez teljesül, ha az áramlást függvény magasságfüggését a \(\cos (\pi z / H) \) tényező adja, ahol \(n = 1, 2, \ldots \). Az \(x \) irányban haladó sejthullámot keresve, a teljes áramlást függyény ezért a \(\psi_0 \cos (\pi z / H) \exp (i \omega t - i k_x x) \) alakban írható. Itt \(n \) az egyes normálmodusokat különbözteti meg. Ezt (13.33)-be helyettesítve az

\[
\dot{\omega}_0 \left(-k_x^2 - \frac{f_0^2}{N^2} \left(\frac{n \pi}{H} \right)^2 \right) - i \beta k_x = 0 \tag{13.34}
\]
feltételt kapjuk, melyből a diszperziós reláció

\[
\omega_0 = -\frac{\beta k_x}{k_x^2 + \frac{f_0^2 n^2}{N^2 H^2}} \tag{13.35}
\]

Vegyük észre, hogy a nevezőben éppen a (6.33) \(n \)-edik Rossby-sugár jelenik meg, azaz

\[
\omega_0 = -\frac{\beta k_x}{k_x^2 + \frac{f_0^2 n^2}{R_n^2}} \tag{13.36}
\]

Mindegyik hullámmódus sebessége negatív, s ez nyugatra mutató fázissebességnek felel meg. A hosszú hullámok \((k_x \to 0) \) a leggyorsabbak, terjedési sebességük \(-\beta R_n^2 \). Minél nagyobb \(n \),
annál több különböző sebességű vízszintes rétegre bomlik a hullám és annál kisebb a maximális sebessége. A legaktívabb módusok tehát a legalacsonyabb indexűek.

Az \(n = 1 \) módus hasonló a két rétegű folyadék első Rossby-hullámjához, csak benne a sűrűség folytonosan csökken felfelé (13.3 ábra). Érdemes felirni az egyes mennyiségek hely- és időfüggését ebben a módszerek. Az áramlás függvény valós részének \(\psi_0 \cos(\pi z/H) \cos(\omega_0 t - k_x x) \) alakjából, és a dinamikai nyomás (13.23) kifejezéséből

\[
v = k_x \psi_0 \cos\left(\frac{\pi z}{H}\right) \sin(\omega_0 t - k_x x), \quad p' = \frac{\partial_0}{\rho_0} \psi_0 \cos\left(\frac{\pi z}{H}\right) \cos(\omega_0 t - k_x x).
\]

(13.37)

A sűrűségáterjedés és a feláramlás sebesség (13.24) és (13.25) alapján

\[
\dot{\rho}' = \frac{\rho_0 \pi}{g} \psi_0 \sin\left(\frac{\pi z}{H}\right) \cos(\omega_0 t - k_x x), \\
w = -\frac{f \rho_0 \pi}{N^2} \psi_0 \sin\left(\frac{\pi z}{H}\right) \sin(\omega_0 t - k_x x).
\]

(13.38)

Ebből látszik, hogy a sebesség és a nyomás szélsőértékei negyed hullámhosszal eltolva követik egymást, a függőleges áramlás ott a leggeresebb, ahol a vízszintes sebesség, de míg az utóbbi a felső, ill. alsó perem körül a legnagyobb, addig a feláramlás a középszinten.

13.3 ábra: A első Rossby-hullám szerkezete folytonos rétegzettsgű közegben (az \(n = 1 \) módus). A vonalak állandó sűrűségű felületeket jelölik.

Amennyiben a merev lap közelítést nem alkalmazzuk, a külső felszín mozoghat és ezért ott a függőleges sebesség nem lesz zérus. A korábban látott esetekhez hasonlóan az \(n = 1, 2, \ldots \) baroklin módusok jellege gyakorlatilag nem változik, diszperziós relációjuk (13.35) marad. Megjelenik ugyanakkor új módszként a szinte a teljes folyadék homogén közegként történő mozgása, a szabad felszínű Rossby-hullámok szabályai szerint (2.6 fejezet). Az ennek megfelelő barotróp módus diszperziós relációja az \(R \) külső Rossby-sugarat tartalmazza, tehát az \(R_0 \equiv R \) választással illik a (13.36) sorozatba. Az öceáni Rossby-hullámok energiatranszportjának legalább 80 százalékát a barotróp és az első baroklin módus biztosítja.

Érdemes meg megvizsgálni, mikor lehetetlenné olyan Rossby-hullámok, melyek energiát szállítanak a felső légrétegekbe. Haladó hullámokat keresünk a \(\psi_0 \exp(i \omega_0 t - i k_x x - i k_z z) \) alakban.

A (13.33) egyenlet megoldásából ekkor a diszperziós reláció

\[
\omega_0 = -\frac{\beta k_x}{k_x^2 + k_z^2 N^2}.
\]

(13.39)
Mivel a csoportsebességnek most van függőleges komponense is, az ilyen Rossby-hullámokban az energia áramlhat felfelé.

Természetesen merül fel a kérdés, hogy állandó hättéramlás valamilyen \(d(x)\) periodikus domborzat fölött kelthet-e olyan Rossby-hullámokat, melyek energiája felfelé halad és közben a hullám a domborzathoz rögzített koordinátarendszerekben áll. A jelenség analóg a lee hullámokéval, de most a rétegzettségen kívül a forgásnak és a \(\beta\)-hatásnak is szerepe van. Mivel a Rossby-hullámok nyugatra mozognak, a hättéramlásnak keletre haladónak kell lennie, ahhoz, hogy az eredő áramlás stacionárius lehessen. További feltétel, hogy az \(\omega = 2\pi U/\lambda\) frekvencia, melyet az \(U\) sebességű áramlásnak a \(\lambda\) hullámhosszú domborzaton történő áthaladása definiál, egyezzen meg abszolútértében a \(k_x = 2\pi/\lambda\) hullámhosszal gerjesztett Rossby-hullám \(\omega_0\) frekvenciájával:

\[
U k_x = \frac{\beta k_x}{k_x^2 + \frac{\beta^2}{N^2}},
\]

(13.40)

Innét látszik, hogy a gerjesztett Rossby-hullám hullámszámvektorának \(k_x\) függőleges komponense kielégíti a

\[
k_x^2 \left(\frac{\beta^2}{N^2} \right) = \frac{\beta}{U} - k_x^2
\]

(13.41)
eyenletet. Valódi felfelé terjedő hullám csak valós \(k_x\)-hez tartozhat, mely az északi földről csak

\[
0 < U \leq U_c \equiv \beta \frac{\lambda^2}{(2\pi)^2}
\]

(13.42)
estén, vagyis elegődőn lassú áramlásokban lehetséges. Ilyenkor viszont a csoportsebesség vektorra nyilván felfelé mutató komponensek rendelkezik, hiszen a domborzat az energiaforrás. Ugyanaz az eredmény a hättéramlás rögzített sebesség esetén azt jelenti, hogy a domborzat hullámszámának elegődőn nagynak kell lennie, ki kell elégítenie a

\[
\lambda \geq \lambda_c \equiv 2\pi \sqrt{\frac{U}{\beta}}
\]

(13.43)
feltételt. Felfelé energiát szállító Rossby-hullámokat csak hosszú domborzati periodicitások gerjeszthetnek. A nyugati szél ilyen függőleges irányú energiaállítást írt biztosító Rossby-hullámokat csak a Föld legnagyobb hegysegei felfelé képes lelőni. A kritikusnál ráöveidebb hullámhosszak esetén a domborzat által kiváltott áramlás a magassággal leseng, hullám nem alakul ki.

A jelenség hasonló a lee hullámokhoz (l. 5.9 fejezet), de most fellép egy alapvető aszimetria: csak nyugatról érkező áramlások gerjeszthetnek ilyen, energiaszállító Rossby-hullámokat. Ez a Föld forgásának újabban fontos megnyilvánulása.

Az energetikát folyamatnak fontos következményei vannak a felső légköre. A legfelső legfelső hajtó hullám a troposzféra felső határáttal is mozgásba hozzák, mely a fölötte elhelyezkedő sztratoszféra szempontjából tekinthető gerjesztésnek. Ahhoz, hogy az energia tovább is terjedhessen Rossby-hullám formájában felfelé, a sztratoszférán belül is nyugati szelére van szükség. Ha ez jelen van, akkor a sztratoszférának is fénnmaradhat Rossby-hullám. Ennek típuskája példája az ún. sarki örvény (polar vortex), mely ez a sarki földön fogalom a középes szélességeken 20-30 km magasságban körülfogó jet-szerű nagy Rossby-hullám (13.4 ábra). Sarki örvény mindig a téli sarki földön jön csak létre, mert a sztratoszféra a nyári sarki földet a legnelegebb, így a termikus áramlás a téli sztratoszférában vezet nyugati szelére. Ennek megfelelően a sarki örvény a kora nyári időszakban megszűnik, s csak a tél kezdetén jelenik meg újra az adott földről.

Az ötöndzsi, a nagyselegi öozontalomban jelentős csökkenése a tél folyamán a sarki örvényben alakul ki. Az öozoniányos legyőzés csak az örvény megszűnése után keveredhet el a teljes légkörben, mert a Rossby-hullámok gyors áramlás nehéz a nyugatkicserelődek az örvény külseje és belseje között, amíg az örvény létezik.
13.4 ábra: Sarki örvény (fehér szélű tartomány) a Déli-sark fölött. A sarki örvény a sztratoszférában telen kialakuló Rossby-hullám. Ez erős horizontális áramlással jár, s ezért az örvény belsejében levő anyagok nehezen jutnak ki belőle. Az özonhiány itt halmozódik fel az öronyuk formájában [Lang].

13.4 A baroklin instabilitás folytonos rétegzettségű közegebén

Tektínsűk kiindulási állapotnak a (6.63) termikus áramlást. Célzott olyan koordinátarendszerben dolgozunk, mely a középső folyadékréteg $U/2$ sebességgel mozog. A rendszer szimmetriáját úgy vehetjük legjobban figyelembe, ha kivételesen a $z = 0$ értéket is ehhez a szinthez rögzítjük, azaz az aljzat a $z = -H/2$, a folyadékréteg teteje pedig a $z = H/2$ szinthez tartozik. A termikus áramlást a ψ' áramlási függvényt leíró kvázigeoszfrolikus perturbációt adunk. A teljes áramlási függvény tehát $\psi = U(z)y + \psi'$, ahol $U(z) = Uz/H$ a termikus áramlás sebessége. A (6.63) összefüggés formalisan érvényes, hiszen a sebességgradiens állandó, s a sebesség most is a $z = 0$ szinten tűnik el (csak ez a középszint). Mivel látottuk, hogy az instabilitás legalapvetőbb vonásai a β-hatás nélkül is megérintők, a folytonos leírásban az egyszerűség kedvéért az f_0-sik közelítést használjuk és az északi féltékére szorítkozunk. A perturbáló hullámfüggvényben linearizált (13.22) kvázigeoszfrolikus egyenlet ekkor, állandó Brunt–Väisälä-frekvencia esetén

$$
\left(\frac{\partial}{\partial t} + U(z) \frac{\partial}{\partial x} \right) \left[\Delta \psi' + \frac{f_0^2}{N^2} \frac{\partial^2 \psi'}{\partial z^2} \right] = 0. \tag{13.44}
$$

A merev lap közelítést választva, a peremfeltétel az, hogy a függőleges sebesség eltűnik mindkét határon, azaz $w = 0$ a $z = -H/2$ és $z = H/2$ szinten. A függőleges sebesség (13.25) kvázigeoszfrolikus kifejezésének linearizált változata

$$
w = -\frac{f_0}{N^2} \left[\left(\frac{\partial}{\partial t} + U(z) \frac{\partial}{\partial x} \right) \frac{\partial \psi'}{\partial z} - \frac{dU}{dz} \frac{\partial \psi'}{\partial x} \right]. \tag{13.45}
$$

Mivel a termikus áramlás lineáris magasságfüggősű, a sebesség z szerinti deriváltja az U/H állandó.
A termikus áramlás körüli sík hullámmegoldást, a baroklin hullámot \(\psi' = \psi_0(z) \exp \left(i\omega_0 t - i k_x x \right) \),
\(k_x > 0 \) alakban keresve, a potenciális örvényesség megmaradását kifejező (13.44) egyenletből

\[
(\omega_0 - k_x U(z)) \left(-k_x^2 \psi_0 + \frac{\kappa_0^2}{N^2} \frac{d^2 \psi_0}{dz^2} \right) = 0.
\] (13.46)

Ez csak úgy teljesülhet, ha a második zárójel eltűnik, melyből valós exponenciális megoldásokat kapunk az áramlási függvény magasságfüggésére

\[
\delta \equiv k_x \frac{N}{f_0} \] (13.47)

paraméterrel. A függőleges irányban kialakuló lecsengést a \(\delta \) együttható (imaginárius \(k_x \)) jellemzi. A két független exponenciális megoldás kombinációját érdemes hiperbolikus függvényekkel megadni:

\[
\psi_0(z) = A \sinh(\delta z) + B \cosh(\delta z).
\] (13.48)

A magasságfüggés tehát más jellegű, mint a folytonos rétegzettségű közeg Rossby-hullámaiban (l. 6.3 fejezet).

Az \(A, B \) amplitudókat és a diszperziós relációt a \(w = 0 \) peremfeltételek határozzák meg. Az aljzaton

\[
(\omega_0 + \frac{U k_x}{2}) \delta \left(A \sinh(\frac{\delta H}{2}) - B \cosh(\frac{\delta H}{2}) \right) + \frac{U k_x}{H} \left(-A \cosh(\frac{\delta H}{2}) + B \sinh(\frac{\delta H}{2}) \right) = 0. \] (13.49)

A felső szinten

\[
(\omega_0 - \frac{U k_x}{2}) \delta \left(A \cosh(\frac{\delta H}{2}) + B \sinh(\frac{\delta H}{2}) \right) + \frac{U k_x}{H} \left(A \sinh(\frac{\delta H}{2}) + B \cosh(\frac{\delta H}{2}) \right) = 0. \] (13.50)

Az amplitudók kiküszöbölésével az

\[
\left[\omega_0 R' + U \left(\frac{k_x R'}{2} - \tanh(\frac{k_x R'}{2}) \right) \right] \left[\omega_0 R' - U \left(\frac{k_x R'}{2} - \coth(\frac{k_x R'}{2}) \right) \right] + \left[\omega_0 R' - U \left(\frac{k_x R'}{2} - \coth(\frac{k_x R'}{2}) \right) \right] \left[\omega_0 R' + U \left(\frac{k_x R'}{2} - \tanh(\frac{k_x R'}{2}) \right) \right] = 0. \] (13.51)

eyenletetekre jutunk. Itt főhasználtuk, hogy a \(\delta H \) dimenziótlan paraméter kifejezhető az (6.34) belső Rossby-sugár és a hullámszám szorzataként:

\[
\delta H \equiv k_x R' \equiv k_x N H. \] (13.52)

Az egyenletet átrendezve a diszperziós reláció:

\[
\omega_0 = \pm k_x \frac{U}{2} \sqrt{ \left(1 - \frac{\tanh(k_x R'/2)}{k_x R'/2} \right) \left(1 - \frac{\coth(k_x R'/2)}{k_x R'/2} \right) }. \] (13.53)

Az \(\omega_0/k_x \) terjedési sebesség tehát csak az \(U \) termikus áramlási sebességtől és a \(k_x R'/2 \) kombinációtól függ. Mivel a \(\theta \) függvény értéke mindig kisebb, mint az argumentuma, az első zárójel pozitív. A második azonban elegendően kis hullámszámokra negatív lesz.

A frequencia akkor imaginárius, ha \(k_x R'/2 < \coth(k_x R'/2) \), azaz ha \(\delta H = k_x R' < 2,40 \). Az instabilitás feltétele tehát \(k_x < k_c \), ahol

\[
k_c = 2,4 \text{ } R'^{-1}. \] (13.54)
a kritikus hullámszám. A rendszer minden olyan perturbációra instabil, melynek hullámhossza

$$\lambda > \lambda_c = 2,62 R' = 2,62 \frac{NH}{f_0},$$ \hspace{1cm} (13.55)

eyünk a belső Rossby-sugár 2,62-szeresének nagyobb. Az időben exponentiálisan növekvő megoldás (13.53) alakban alakul az \(s = \exp(st) \), ahol

$$s = \frac{f_0 U}{NH} \sqrt{\left(cth \left(\frac{k_x R'}{2} \right) - \frac{k_x R'}{2} \right) \left(\frac{k_x R'}{2} - th \left(\frac{k_x R'}{2} \right) \right)}$$ \hspace{1cm} (13.56)

az instabilitási exponens (13.5 ábra). Ez az exponens a

$$k^* R' = \delta^* H = 1,61$$ \hspace{1cm} (13.57)

eránc a legnagyobb\(^1\), s a hozzá tartozó \(\lambda^* = 2\pi/k^* \) hullámhossz

$$\lambda^* = 3,91 \quad R^* = 3,91 \quad \frac{NH}{f_0}.$$ \hspace{1cm} (13.58)

A leggyorsabban növekvő pertubáció hullámhossza tehát a belső Rossby-sugár mintegy négyszerese, azaz a légkörben kb. 4000 km, az óceánban 120 km. Az instabilitási exponens maximális, \(k^* \)-hoz tartozó értéke

$$s^* = 0,31 \quad \frac{f_0 U}{NH}.$$ \hspace{1cm} (13.59)

Az ehhez tartozó kétszereződési idő a légkörben 4 nap, az óceánban 100 nap nagyságrendű. Fontos hangsúlyozni, hogy az instabil hullámok diszperziós relációjában a frekvencia tisztán képzetes (\(s \) valós). Ez azt jelenti, ezek a hullámok koordinátarendszerünkben állnak, azaz a Földhöz képest nyugvó rendszerben a termikus áramlás középszinten vett \(U/2 \) sebességgel haladnak leleple.

![Diagram](image)

13.5 ábra: A baroklin instabilitási exponens folytonos rétegzetségű közegben az \(f_0 \) sík közeli tétesben. Az instabilitási tartomány és a leggyorsabban növekvő hullám \(k^* \) hullámszáma nem függ a termikus áramlás sebességtől.

A fenti érteklőtől az instabil baroklin hullámok áramlási függvénye is meghatározható (az eredmény természetesen csak abban a kezdeti időszakban érvényes, amíg az amplitudó kicsi). A (13.49) egyenletből (13.53) felhasználásával az együtthatók aránya

$$\frac{B}{A} = \pm \sqrt{\frac{(k_x R'/2)cth(k_x R'/2)}{1 - (k_x R'/2)th(k_x R'/2)}}.$$ \hspace{1cm} (13.60)

\(^1\)Mely a \(x^2 + cthx = x^*(th^2x^* + cth^2x^*) \) egyenlet megoldásából adódik az \(x^* = k^* R'/2 \) mennyiségére.
A leggyorsabban növekvő amplitudójú, (13.58) hullámhosszú hullámra a gyök éppen $\text{th}(k^* R / 2)$, azaz
$$B = -i \, A \, \text{th}\left(\frac{\delta^* H}{2}\right).$$

Ezzel az áramlási függvény:
$$\psi'(x, z, t) = \psi_0(z) e^{\kappa t - i k^* x} = A e^{\kappa t} \left(\text{sh}(\delta^* z) - i \, \text{th}(\delta^* H / 2) \, \text{ch}(\delta^* z) \right) e^{-i k^* x}.$$ \hspace{1cm} (13.62)

Fontos összefüggést kapunk, ha felhasználjuk, hogy a perturbáló áramlási függvény arányos a p' dinamikai nyomással (13.23). A leginstabilabb móduszban a (13.62) kifejezést a felső ($z = H/2$) ill. az alsó ($z = -H/2$) szinten véve azt találjuk, hogy a $p'(H/2) = i p'(-H/2)$, azaz a nyomás mindkét peremen ugyanakkora nagyságú. A felső szinten az x-függés $\exp[-i(k^* x - \pi/2)]$, azaz ott a nyomás 	extit{negyed hullámhossznyi késésben} van a lentíezhez képest. Az izobárok tehát a termikus áramlás erősödésével ellentétes irányban döntnek. Ez a magasságfüggés az instabil baroklin hullámok egyedi vonása. A ciklonok közepes (5 km) magassági szinten mért nyomásminimuma a tapasztalat szerint valóban általában néhány száz km-rel nyugatabbra fekszik a felszíni alacsony nyomású középponttal (13.6 ábra).

![Diagram](image)

(a) \hspace{1cm} (b)

13.6 ábra: Ciklonok a meteorológiai térkép különböző szintjein. a) Felszíni nyomásetlenség. b) Az 500 hPa-os szinthez (kb. 5 km) tartozó szintvonalk. A nyomásminimum a magasabb légrétegben nyugatabbra esik [European Meteorological Bulletin, 1998. március 15., 12 óra, Deutscher Wetterdienst].
III. rész

Függelék
14. fejezet
Összefoglalás

14.1 A természetes közegek anyagi paraméterei

<table>
<thead>
<tr>
<th></th>
<th>(\rho_0)</th>
<th>(\nu)</th>
<th>(\kappa)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/m(^3)</td>
<td>m(^2)/s</td>
<td>m(^2)/s</td>
<td>m(^2)/s</td>
</tr>
<tr>
<td>VÍZ</td>
<td>10(^3)</td>
<td>1,0 \cdot 10^{-6}</td>
<td>1,4 \cdot 10^{-7}</td>
<td>1,5 \cdot 10^{-9}</td>
</tr>
<tr>
<td>LEVEGŐ</td>
<td>1,2</td>
<td>1,5 \cdot 10^{-5}</td>
<td>2,1 \cdot 10^{-5}</td>
<td>2,4 \cdot 10^{-5}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\lambda)</th>
<th>(\alpha)</th>
<th>(c_p)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/(m \cdot s)</td>
<td>1/fok</td>
<td>J/(kg fok)</td>
<td>m/s</td>
</tr>
<tr>
<td>VÍZ</td>
<td>1,0 \cdot 10^{-3}</td>
<td>2,1 \cdot 10^{-4}</td>
<td>4,2 \cdot 10^{3}</td>
<td>1,5 \cdot 10^{3}</td>
</tr>
<tr>
<td>LEVEGŐ</td>
<td>1,8 \cdot 10^{-5}</td>
<td>3,4 \cdot 10^{-3}</td>
<td>1,0 \cdot 10^{3}</td>
<td>3,4 \cdot 10^{2}</td>
</tr>
</tbody>
</table>

14.2 A mozgásegyenletek

Alapegyenletek

Gravitációs erőtérben lévő izotróp folyadékra, mely a függőleges \(z \) tengely körüli \(\Omega \) szögesbességgel forog, az együttforgó rendszerben az impulzustételt, a tőmegmegrakadást, és a termodinamika főjéléseiből következő hővezetést a következő hidrodinamikai egyenletek írják le:

\[
\frac{d\rho}{dt} = \rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\nabla \text{grad}) \mathbf{v} \right) = -\rho 2\Omega \mathbf{n} \times \mathbf{v} - \text{grad}p - \rho g \mathbf{n} + \lambda \Delta \mathbf{v} + \lambda \text{grad div} \mathbf{v},
\]

\[
\frac{\partial \rho}{\partial t} + \text{div}(\rho \mathbf{v}) = \frac{d\rho}{dt} + \rho \text{div} \mathbf{v} = 0,
\]

\[
\frac{dT}{dt} \equiv \frac{\partial T}{\partial t} + (\nabla \text{grad}) T = \kappa \Delta T + \Phi.
\]

Itt \(\mathbf{v} \) a háromdimenziós sebességvektor, függőleges komponense \(w \), vízszintes komponensei \(u, v, n \) a függőlegesen felfelé mutató egységvektor. \(\rho, p \) és \(T \) a sűrűséget, nyomást, ill. hőmérsékletet jelöli. \(g \) a gravitációs gyorsulás, \(\lambda \) és \(\lambda \) belső surlódási együttartó, és \(\kappa \) a hődiffúziós állandó. A \(\Phi \) mennyiség a vízszálzás entrópiaprodukcióiból adódó forrástag, mely rendszerint elhanyagolható a hővezetéssel kapcsolatos járulék mellett. A peremfeltétel: a falakon \(\mathbf{v} \) felveszi a fal sebességét.

Összefoglalóan a folyadékban \(\rho \equiv \rho_0 \) és

\[
\frac{d\mathbf{v}}{dt} \equiv \frac{\partial \mathbf{v}}{\partial t} + (\nabla \text{grad}) \mathbf{v} = -2\Omega \mathbf{n} \times \mathbf{v} - \frac{1}{\rho_0} \text{grad}p - g \mathbf{n} + \nu \Delta \mathbf{v},
\]

\[
\text{div} \mathbf{v} = 0,
\]

\[
\frac{dT}{dt} \equiv \frac{\partial T}{\partial t} + (\nabla \text{grad}) T = \kappa \Delta T + \Phi,
\]

ahol \(\nu = \lambda / \rho_0 \) a kinematikai viszkozitás.

Ideális folyadékban \(\nu = 0, \kappa = 0, \Phi = 0 \), hőkölzés nem történik, ezért az entrópiap megmarad a mozgás során. A peremfeltétel az, hogy a falra merőleges komponens tűnik csak el.

Boussinesq-közéltés

A \(\rho_0 \) átlagsűrűségtől és a \(T_0 \) átlaghőmérséklettől csak a \(p'' \) sűrűség-, és \(T'' \) hőmérsékleteltérést mutató közegben

\[
\frac{d\mathbf{v}}{dt} \equiv \frac{\partial \mathbf{v}}{\partial t} + (\nabla \text{grad}) \mathbf{v} = -2\Omega \mathbf{n} \times \mathbf{v} - \frac{1}{\rho_0} \text{grad}p'' - g \frac{\rho''}{\rho_0} \mathbf{n} + \nu \Delta \mathbf{v},
\]

\[
\text{div} \mathbf{v} = 0,
\]

\[
\frac{dT''}{dt} \equiv \frac{\partial T''}{\partial t} + (\nabla \text{grad}) T'' = \kappa \Delta T''.
\]

Itt \(p'' \) a \(\rho_0 \)-hoz tartozó hidrosztatikus nyomástól mért eltérés. A hőtárgulási egyenletből \(p'' = -\alpha \rho_0 T'' \), ahol \(\alpha \) a hőtárgulási együttartó. Elhanyagolható hővezetés esetén (14.9) helyettesíthető

\[
\frac{d\rho''}{dt} \equiv \frac{\partial \rho''}{\partial t} + (\nabla \text{grad}) \rho'' = 0
\]

sűrűséggyenlettel.
Boussinesq-közéltés függőleges rétegzett sűrűségű ideális folyadékban

A $\bar{\rho}(z)$ egyensúlyi sűrűségeloszlástól való csekély ρ' sűrűségeltérésekre

$$\frac{du}{dt} \equiv \frac{\partial u}{\partial t} + (\nabla \text{grad})u = -2\omega \times u - \frac{1}{\rho_0} \text{grad} \rho', \quad (14.11)$$

$$\frac{dw}{dt} \equiv \frac{\partial w}{\partial t} + (\nabla \text{grad})w = -\frac{1}{\rho_0} \frac{\partial \rho'}{\partial t} - \frac{\rho'}{\rho_0} g, \quad (14.12)$$

$$\frac{dg}{dt} \equiv \frac{\partial g}{\partial t} + (\nabla \text{grad})g' = -w \frac{d\bar{\rho}}{dz} \equiv w \frac{\rho_0 N^2(z)}{g}, \quad (14.13)$$

$$\text{div} \mathbf{v} = 0, \quad (14.14)$$

ahol p' a $\bar{\rho}$-hoz tartozó hidrosztatikus nyomástól mért eltérség, $u \equiv (u, v)$ a sűrűségtengely, és $N(z)$ a Brunt-Väisälä-frekvencia.

Boussinesq-közéltés sekély közegben

Az átlagos ρ_0-tól való csekély ρ'', T'' eltérésekre

$$\frac{du}{dt} \equiv \frac{\partial u}{\partial t} + (\nabla \text{grad})u = -f \mathbf{n} \times \mathbf{u} - \frac{1}{\rho_0} \text{grad} \rho'' + \nu \frac{\partial^2 \mathbf{u}}{\partial z^2}, \quad (14.15)$$

$$\frac{dw}{dt} = 0 = -\frac{\partial \rho''}{\partial z} - \rho'' g \quad (14.16)$$

$$\text{div} \mathbf{v} = 0, \quad (14.17)$$

$$\frac{dT''}{dt} \equiv \frac{\partial T''}{\partial t} + (\nabla \text{grad})T'' = \kappa \frac{\partial^2 T''}{\partial z^2}, \quad (14.18)$$

ahol $u \equiv (u(x, y, z, t), v(x, y, z, t))$ a vízszintes sűrűségtengelyek, és $\rho'' = -\alpha \rho_0 T''$. Vízszintes aljzatú forogatott edényben $f \equiv 2\Omega$. Ha az egyenleteket egy bolygó felszínnél kialakuló áramlások leírására alkalmazzuk a lokális koordinátarendszerben, akkor a görbület az $f \equiv f(y) \approx f_0 + \beta y$ Coriolis-paraméter használatával vehető figyelembe.

Függőleges rétegzett esetén ideális folyadékban

A $\bar{\rho}(z)$ egyensúlyi sűrűségeloszlástól való ρ' sűrűségeltérésekre

$$\frac{du}{dt} \equiv \frac{\partial u}{\partial t} + (\nabla \text{grad})u = -f \mathbf{n} \times \mathbf{u} - \frac{1}{\rho_0} \text{grad} \rho', \quad (14.19)$$

$$\frac{dw}{dt} = 0 = -\frac{\partial \rho'}{\partial z} - \rho' g \quad (14.20)$$

$$\frac{dg}{dt} \equiv \frac{\partial g}{\partial t} + (\nabla \text{grad})g' = -w \frac{d\bar{\rho}}{dz} \equiv w \frac{\rho_0 N^2(z)}{g}, \quad (14.21)$$

$$\text{div} \mathbf{v} = 0, \quad (14.22)$$

ahol p' a $\bar{\rho}$-hoz tartozó hidrosztatikus nyomástól mért eltérség és $u \equiv (u, v)$ a sűrűségtengelyek.
Sekélyfolyadék egyenletek

\[\frac{d\mathbf{u}}{dt} \equiv \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \text{grad}) \mathbf{u} = -f \mathbf{n} \times \mathbf{u} - \text{grad} \eta, \quad (14.23) \]

\[\frac{dh_i}{dt} \equiv \frac{\partial h_i}{\partial t} + \text{div}(h_i \mathbf{u}) = 0, \quad (14.24) \]
ahol \(\mathbf{u} \equiv (u(x,y,t), v(x,y,t)) \) a síkbeli sebességvektor, \(\eta(x,y,t) \) a felszíni alak és \(h(x,y,t) = H + \eta(x,y,t) - d(x,y) \) a teljes vízmélység \((d(x,y) \text{ a domborzat alakja}). \) A \(\eta \) feláramlás sebesség a \(\partial \eta / \partial z = -\text{div} \mathbf{u} \) egyenletből adódik.

Kétrétegű sekélyfolyadék egyenletek szélnyírással

\(\tau \) külső felszíni vízszintes szélnyírás jelenlétében

\[\frac{d\mathbf{u}_1}{dt} \equiv \frac{\partial \mathbf{u}_1}{\partial t} + (\mathbf{u}_1 \text{grad}) \mathbf{u}_1 = -f \mathbf{n} \times \mathbf{u}_1 - \text{grad} \eta + \frac{\tau}{\partial_0 H_1}, \quad (14.25) \]

\[\frac{d\mathbf{u}_2}{dt} \equiv \frac{\partial \mathbf{u}_2}{\partial t} + (\mathbf{u}_2 \text{grad}) \mathbf{u}_2 = -f \mathbf{n} \times \mathbf{u}_2 - \text{grad} \eta - g' \text{grad} \chi, \quad (14.26) \]

\[\frac{dh_i}{dt} \equiv \frac{\partial h_i}{\partial t} + \text{div}(h_i \mathbf{u}_i) = 0, \quad i = 1, 2, \quad (14.27) \]
ahol \(\mathbf{u}_1 \) a felső, \(\mathbf{u}_2 \) az alsó közeg vízszintes síkbeli sebessége, \(\eta \) a külső, \(\chi \) a belső elválasztó felület alakja. \(H_1 \) az egyes folyadékrétegek átlagos mélysége. A pillanatnyi mélységek \(h_1 = H_1 + \eta - \chi, \) ill. \(h_2 = H_2 + \chi - d. \)

Kvázigeostrofikus egyenlet homogén közegben

A geostrofikus egyensúlytól kissé eltérő mozgásokra

\[\left[\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right] \left(\Delta \psi - \frac{\psi}{R^2} + \beta y + f_0 \frac{d}{H} \right) = \frac{\text{rot}_z \tau}{\beta \partial_0 H} - \frac{\Delta \psi}{t_0} + \nu \Delta^2 \psi, \quad (14.28) \]
ahol \(\psi(x,y,t) \) az áramlás függvénye, \(d(x,y) \) a domborzat, \(R \) a Rossby-sugár, \(f_0 + \beta y \) a Coriolis-paraméter, és \(t_0 = \sqrt{2H/(\sqrt{Rf_0})} \) a félörgetési idő.

Kvázigeostrofikus egyenlet kétrétegű közegben

A \(H_1, H_2 \) átlagos vastagságú rétegre vonatkozó goészstrofikus egyenlet vízszintes aljzat esetén

\[\left[\frac{\partial}{\partial t} + \frac{\partial \psi_1}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi_1}{\partial y} \frac{\partial}{\partial x} \right] \left(\Delta \psi_1 + \beta y - \frac{f_0^2}{g H_1} \psi_1 - \frac{f_0^2}{g' H_1} (\psi_1 - \psi_2) \right) = 0, \quad (14.29) \]

\[\left[\frac{\partial}{\partial t} + \frac{\partial \psi_2}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi_2}{\partial y} \frac{\partial}{\partial x} \right] \left(\Delta \psi_2 + \beta y + \frac{f_0^2}{g' H_2} (\psi_1 - \psi_2) \right) = 0, \quad (14.30) \]
ahol \(\psi_1 \) az egyes rétegek áramlás függvénye, \(g' \) pedig a sűrűségkülönbséghez tartozó redukált gravitációs gyorsulás.
Kvázigeosztrófikus egyenlet függőleges rétegzett ségű közegben

Mozdulatlan külső felszínű és vízszintes aljzatú ideális folyadékra

$$\left(\frac{\partial}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial}{\partial x} \right) \left[\Delta \psi + \beta y + \frac{\partial}{\partial z} \left(\frac{f^2}{N^2(z)} \frac{\partial \psi}{\partial z} \right) \right] = 0$$

(14.31)

ahol \(\psi(x,y,z,t) \) az áramlást függvény, \(N(z) \) a Brunt-Väisälä-frekvencia, és a Laplace-operátor csak a vízszintes koordinátákra hat.
14.3 Dimenziós számok

<table>
<thead>
<tr>
<th>Dimenziós szám</th>
<th>Tipikus értéke a földön</th>
<th>légkör</th>
<th>óceán</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rossby-szám $Ro = \frac{UL}{V_0 H}$</td>
<td>0,1</td>
<td>0,1 - 0,01</td>
<td></td>
</tr>
<tr>
<td>Reynoldsszám $Re = \frac{UL}{\nu}$</td>
<td>10^{13}</td>
<td>10^{11}</td>
<td></td>
</tr>
<tr>
<td>Froude-szám $Fr = \frac{U}{\sqrt{g H}}$</td>
<td>0,1</td>
<td>0,1 - 0,01</td>
<td></td>
</tr>
<tr>
<td>β-paraméter $Be = \frac{\beta L}{H}$</td>
<td>0,1</td>
<td>0,1 - 0,01</td>
<td></td>
</tr>
<tr>
<td>Ekman-szám $Ek = \frac{U}{f_0 H^2}$</td>
<td>10^{-4}</td>
<td>10^{-6}</td>
<td></td>
</tr>
<tr>
<td>Belső Froude-szám $Fr' = \frac{U}{N H} = \frac{U}{\sqrt{g H}}$</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td></td>
</tr>
<tr>
<td>Frekvencia-arány $Fn = \frac{N}{f_0}$</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Burger-szám $Bu = \left(\frac{N H}{f_0 L} \right)^2$</td>
<td>1</td>
<td>1 - 0,1</td>
<td></td>
</tr>
<tr>
<td>Richardson-szám $Ri = \frac{\nu^2}{(\partial u/\partial z)^2}$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

14.2 táblázat: A környezeti áramlásokat jellemző legfontosabb dimenziós számok egy forgó bolygón. Az L vízszintes síkbeli lineáris méretet a bolygó R_B sugara felülől korlátozza. Az Ekman-számot a turbulens viszkozitással képeztük, a Richardson-szám értéke a határrétegre vonatkozik. Laboratóriumi méréseken az $f_0 = 2\Omega B \sin \varphi_0$ Coriolis-paraméter szerepét a forgatási szögsebesség kétszerese, 2Ω veszi át, a Be paraméter pedig az aljzat γ meredekségével adható meg: $Be = \gamma L/H$.

270
14.4 Közelítések

<table>
<thead>
<tr>
<th>Közelítés neve</th>
<th>Feltétele</th>
<th>Elhanyagolt jelenség</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összenyomhatlan</td>
<td>Áramlás lassabb a hangnál: $U \ll c$</td>
<td>Hang, lőkész hullám</td>
</tr>
<tr>
<td>Ideális</td>
<td>Vízkozitás kicsi: $Re \ll 1$</td>
<td>Közegellenállás, szélnyírás</td>
</tr>
<tr>
<td>Sekély</td>
<td>Vízszintes méret nagy: $H \ll L$</td>
<td>Mélyvízi hullámok, erős feláramlások</td>
</tr>
<tr>
<td>Merev lap</td>
<td>Felszín mozgás gyege, a belső mozgásokhoz képest</td>
<td>Felszín hullámok, barotróp módusok</td>
</tr>
<tr>
<td>Geosztrofikus</td>
<td>Coriolis-erő és nyomás dominál: $Ro \to 0$</td>
<td>Időfüggő mozgások, hullámok</td>
</tr>
<tr>
<td>f_o-sík</td>
<td>A bolygó görbülete nem lenyeges: $\beta = 0$</td>
<td>Rossby-hullám, peremáramlatok</td>
</tr>
<tr>
<td>β-sík</td>
<td>Kiterjedés kisebb a bolygó sugaránál, $\beta L \ll f_0$</td>
<td>Az egész bolygóra kiterjedő mozgások</td>
</tr>
<tr>
<td>Kvázigesztrofikus</td>
<td>Kis eltéréss a geosztrofikustól $Ro \ll 1$</td>
<td>Gyors mozgások, Poincaré-, Kelvin-hullámok</td>
</tr>
<tr>
<td>Boussinesq</td>
<td>Kis sűrűségágtalozás $\varrho'' \ll \varrho_0$</td>
<td>Nagy sűrűségváltozással járó folyamatok</td>
</tr>
<tr>
<td>Egyenletes rétegzetség</td>
<td>Állandó gradiens: $N = \text{konstans}$</td>
<td>Belső hullám elhajlása, törése, visszaerődése</td>
</tr>
<tr>
<td>Kétrétegű</td>
<td>Sűrűség eltérő konstans a két rétegben</td>
<td>Felfelé haladó belső hullámok, magasabb módusok</td>
</tr>
<tr>
<td>Redukált sekély- folyadék modell</td>
<td>A vastag réteg nem mozog</td>
<td>Ellenáramok, baroklin instabilitás</td>
</tr>
</tbody>
</table>

14.3 táblázat: A használt közelítések áttekintő táblázata
14.5 Hullámtípusok

<table>
<thead>
<tr>
<th>HOMOGÉN</th>
<th>HOMOGÉN</th>
<th>HOMOGÉN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEKÉLY</td>
<td>MÉLY</td>
<td>SEKÉLY</td>
</tr>
<tr>
<td>NEM FORGATOTT</td>
<td>FORGATOTT</td>
<td></td>
</tr>
</tbody>
</table>

gravitációs:
\[\omega_0 = \pm \alpha_0 k \]
\[\alpha_0 = \sqrt{gH} \]

Poincaré:
\[\omega_0 = \pm \sqrt{f_0^2 + \sigma_0^2 k^2} \]

perem mentén Kelvin:
\[\omega_0 = \pm \alpha_0 k_x \]

Rossby (\(\beta \)-hatás):
\[\omega_0 = -\beta \frac{k_y}{k_x^2 + f_0^2 / \sigma_0^2} \]

tehetetlenségi:
\[\omega_0 = \pm f_0 \frac{k_y}{\sqrt{k_x^2 + k_y^2}} \]

272
belső normálmodus:
\[\omega_0 = \pm c_n k \]
\[c_n \approx \sqrt{g/H} \]

belső Poincaré:
\[\omega_0 = \pm \sqrt{f_0^2 + c_n^2 k^2} \]

perem menti belső Kelvin:
\[\omega_0 = \pm c_n k_x \]

belső Rossby (\(\beta\)-hatás):
\[\omega_0 = -\frac{k_x}{k_x^2 + f_0^2 / c_n^2} \]

14.4 táblázat: A környezeti áramlások legfontosabb lineáris hullámai és diszperziós relációi. \(k\) a vízszintes síkbeli hullámszám. A táblázat azonos szintjén levő hullámok hasonló jellegűek, noha fizikai eredetük nem feltétlenül azonos. \(c_n\) a belső hullámok \(n\)-edik normálmodusának terjedési sebessége. A Kelvin-, és Rossby-hullam esetén a kelet-nyugati (\(x\)) irányba haladó alakot, a tehetetlenségi és a belső hullám esetén az \((x, z)\) síkban terjedő alakot adjuk meg. A Kelvin-hullám diszperziós relációjában a +/- előjel az északi/déli feltekérére vonatkozik, a többi kifejezés mindkét feltekén érvényes (s a +/- előjel különböző irányba haladó hullámokat jelöli). Laboratóriumi által az \(f_0\) Coriolis-paraméter szerepét a forgatási szögebesség kétszerese, \(2\Omega\) veszi át, a \(\beta\) paraméter pedig az aljzat \(\gamma\) meredekségével helyettesítendő: \(\beta \to 2\Omega \gamma / H\).
14.6 Jellegzetes távolságok

<table>
<thead>
<tr>
<th>TÁVOLSÁGOK</th>
<th>TIPIKUS ÉRTÉKEK A FÖLDÖN (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LÉGKÖR</td>
</tr>
</tbody>
</table>

Ekman-réteg vastagság

\[D = \pi \sqrt{\frac{2u}{|\omega|}} = H \pi \sqrt{2Ek} \]

1 0,04

Rossby-sugár

\[R = \frac{\sqrt{\frac{u}{|\omega|}}} = \frac{L \frac{Ro}{Fr}} \]

3000 1000

Belső Rossby-sugár

\[R' = \frac{NH}{|\omega|} = \frac{\sqrt{uH}}{|\omega|} = \frac{L \frac{Ro}{Fr'}} \]

1000 100

Rhines-hossz

\[L_R = \sqrt{\frac{u}{|\omega|}} \]

1000 100

14.5 táblázat: A környezeti áramlásokat jellemző legfontosabb távolság jellegű mennyiségek, melyek dimenziótlan számokkal kapcsolatosak. Az \(u' \) mennyiség a vízszintes sűrűségfélkutatások jellegzetes értéke. Az Ekman-féle határréteg vastagságát a \(u_{urb} \) turbulens viszkozitással képeztük. Laboratóriumiakban az \(f_0 \) Coriolis-paraméter szerepét a forgatási szögebesség kétszerese, 20 veszi át.
14.7 Irodalom

Általános hidrodinamika
Budó Á., *Mechanika* (Tankönyvkiadó, Budapest, 1965)

Geofizikai folyadékdinamika

Dinamikus meteorológia
Rákóczi F., *Életterünk a légkör* (Mundus Kiadó, Budapest, 1998)
Fizikai óceanográfia

Geofizika

Turbulencia

M. Ghil, R. Benzi, and G. Parisi (eds.), *Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics* (North-Holland, Amsterdam, 1985)